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Post-Peta CREST = SPPEXA

 ppOpen-HPC (FY.2011-2015) (Leading PI)

v" Open source infrastructure for development and execution of
large-scale scientific applications on post-peta-scale
supercomputers with automatic tuning

v Application Framework with AT
v' https://qgithub.com/Post-Peta-Crest/ppOpenHPC

o ESSEX-Il (FY.2016-2018) (Co-PlI)
v Preconditioned Iterative Solver for Eigenvalue Problems in

Quantum Science

PK-Open-FVM ppOpen-APPL FDM FVM
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@n/en-Hp'E Featured Developments

ppOpen-AT: AT Language for Loop Optimization
— Focusing on Optimum Memory Access

« HACApK library for H-matrix comp. in ppOpen-
APPL/BEM (OpenMP/MPI Hybrid Version)
— First Open Source Library by OpenMP/MPI Hybrid
pPpOpen -MATH/MP (Coupler for Multiphysics
Simulations, Loose Coupling of FEM & FDM)

e Sparse Linear Solvers
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Computing In the Exascale /Post

Moore Era

Power Consumption is the Most Important Issue In
the Post Moore Era
— It is already important now.

— Memory performance in the Post Moore Era is relatively
better than now, but data movement should be reduced
from the view point of energy consumption.

Integration of (Simulation+Data+Learning) (A21 DOE)

Quantum Computing, FPGA ?: “Partial” Solution

— Could be a solution in certain applications (e.g. searching,
graph, data clustering etc.)

— Contributions to (S+D+L)

How to save Energy for Sustainability ?

— (1) Approximate Computing by Low/Adaptive Precision

— (2) Reduction of Computations: Data Driven Approach 5




Approximate Computing with
Low/Adaptive/Trans Precision
Lower Precision: Save Time & Energy & Memory

Approximate Computing: originally for image
recognition etc.

— Approach for Numerical Computations
 SIAM PP18 Sessions, ICS-HPC 2018 Workshop

— OPRECOMP: Open transPREcision COMPuting (Horizon
2020)

Computations with Low Precision
Mixed Precision Approach (FP16-32-64-128)

lterative Refinement

— such computations may provide results with less
accuracy



JHPCN

e https://Ihpcn-kyoten.itc.u-tokyo.ac.jp/en/

 The Joint Usage/Research Center for
Interdisciplinary Large-scale Information
Infrastructures (JHPCN) Is made up of 8 centers of
National University’s equipped with supercomputers.

— Proposal-Based, Renewed Every Year, Computational
Resources Awarded (e.g. Oakforest-PACS with KNL +
Tsubame 3.0 with NVIDIA P100)

e Numerical Library with High -
Performance/Adaptive-Precision/High  -Reliability

— Staring from April 2018, as a part of JHPCN Project in
Japan (Preliminary Works in FY.2018)

— 20+ Members from 13 ) BEATY (g WEK Y || RRIEAS
Institutions (Japan, Germany) $snk7irs @EAEEEE Gy rumk
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» Gerhard Wellein (Erlangen), @ @anmmf'"s" o a—
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Performance/Adaptive -
Precision/High -Reliability

Extension of ppOpen-HPC towards the Post Moore Era

Numerical Library with High - 9
]HPCI\.T .:

Lower/Adaptive Precision + Accuracy Verification
— lterative Refinement, Mixed Precision Computation etc.
— Verification: Collaboration with “Pure” Applied Mathematicians

Automatic Tuning (AT): Selection of the optimum
precision, which minimizes computation time and
power consumption under certain target accuracy
— Implemented to “ppOpen-HPC".

Preconditioned lterative Solvers for Practical Problems
with 1lll-Conditioned Matrices with Adaptive Precision
— FP16-32-64-128




Results: A,/4~ Condition Number
Ratio of Iterations & Computation Time
Single/Double: Down is Good
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Results: A,/4 5~ Condition Number
Ratio of Iterations & Computation Time
Single/Double: Down is Good
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ICCG: ELL/Sliced ELL/SELL -C-o
A=A,

ICCG Solvers on
Intel Xeon/Phi (KNL)
(Oakforest-PACS)
Single Node:
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Results on OFP, Poisson-3D-OMP
Effect of SIMD Vector Length in SELL-C-O
10 colors, 1283
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3D Poisson Solvers on Reedbush -H
A=A,
CPU only: Intel BDW: sec. & Joule
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Watt-value of SP may increase [Sakamoto et al. 2018]

due to larger density of comp. 13
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Computation Time (Normalized):
P].OO, V100 [Sakamoto et al. 2018]
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[Sakamoto et al. 2018]
Energy Consumption (Normalized):

P100, V100
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Approximate Computing with
Low/Trans Precision

o Accuracy verification is important
— Iterative Refinement
* A lot of methods for accuracy verification have been
developed for problems with dense matrices
— But very few examples for sparse matrices & H-matrices
* Generally speaking, processes for accuracy
verification is very expensive
— Sophisticated Method needed

— Automatic Selection of Optimum Precision by Technology of
AT (Auto Tuning)

16
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Special Method for Rather Well-
Conditioned Matrices (M-Matrix)

[Ogita, Ushiro, Oishi 2001] Verification Algorithm

1. Solve a discretized linear system Ax = b.
» X.acomputed solution

2. Solve a linear system|Ay = e|where all
elements of e are 1's.

» y.a computed solution
3. Verify M-property of Ausingy. (§ >0 = Ay > 0)
4. Compute an error bound using
1Yl lIb — AXl o,
1—lle =AYl

It ”e o Aj}” Sl Processes for Verification are very similar to
> those of Solvers. We can do 2 processes in

X = Xl <

parallel manner simultaneously



Numerical Results

Computer: Reedbush-U (1 node)

— Intel Xeon E5-2695v4 (Broadwell-EP, 2.1GHz
18 cores) x 2 sockets
— 1.21 TFLOP/s per socket, 256 GiB (153.6GB/s)

Solver: ICCG with CM-RCM, MC(20)

Stopping criteria:

|Ib—AX||,
1b1]2
»For Ay = e, |le — AP, < 1072

FP64 (double precision), OpenMP (36 threads)

»For Ax = b, <1071

18




Result (1): 4, =4, = 1.0
NX=NY=NZ=128 (n = 2,097,152)
« Upper bounds of maximum relative error and
relative residual norm:

— max
1<isn | Xj

-2z £ 366x1071
D1

« Computing time

Approximation Verification-1
Solve Ax=b Solve Ay=e Verification-2 Total
(415 iter’s) (211 iter’s)
1.18 3.56

Method-1 2.38

Method-2
(2 RHS's)

2.99 1.17e-02 3.00

19



Result (2):

Vary A,/1,~cond between 1 and 106

1.E+00

1.E-02

1.E-04

1.E-06

1.E-08

better
1.E-10

1.E-12

—- Maximum relative error

-& Relative residual norm

g oo

% Xi — X;
max [——

1<i<n x:‘.

/ 106
.__./I/ Y"{L

|
=R Ib — Azl

bl

1.E+0 1.E+1 1.E+2 1.E+3 1.E+4 1.E+5 1.E+6
lambdal / lambda2

It is difficult to estimate the error of a computed solution
only from residual norm!

20
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Summary

 Numerical Library in the Exascale/Post Moore Era

— Reduction of Energy Consumption
« Lower/Adaptive/Trans Precision
« Reduction of Computations: Data Driven Approach (DDA): Panel

 Preliminary Studies in Computing with Lower/Adaptive
Precision

— Computations with lower-precision (FP32, single precision)
work for sparse matrices with certain condition number
e Lower Power Consumption

— Accuracy Verification

e Other Works in FY.2018
— H-matrix solver with lower/mixed precision
— lterative Refinement [Okuda 2010]
— Pipelined Algorithms

— FP16 (Half-Precision)

e Severe Limitation: Only 3-digit accuracy assured
« Preconditioner using Local Information: Block LU, G S
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Target Linear Equation CG Solver by

Ax=b (Double Precision) _ _
coef. Matrixand RHs  lterative Refinement
vector In S,ingle Precision [Okuda et al. 2010]
AL G=D SingleDouble
a;: Scaling Factor

Inner-Loop Solver by
Lower Precision New RHS of Inner Loop

Solve Az=¢ G=rla

A
lterative Refinement a;
X. = Tol. & Iter.# for
L _ ZO_|_ Inner Iteration
Xiv1= X T Qi 44q Converged

= i+1

Converged _
Residual

r=b — Ax

Convergent Solution
(Double Precision) x




NZ
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FP32 (Single) with FP16 Precond
V100, All Problems converge in FP32/64

p=0@z=z,
-
/]1
/]2
Al
A

A/A~=1.0e+3
A/A=1.0e+2
A/A~=1.0e+l
A/A~=1.0e+0

[Hoshino 2018]

NZ
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2 R R R— RE—
1.E-04 1.E-02 1.E+00 1.E+02 1.E+04
RHS
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(Near) Future Works In FY.2019

e Accuracy Verification + AT
— More Reasonable Method for Accuracy Verification
* |lI-Conditioned Sparse/H Mat.. Combined with Iterative Refinement

— Strategy for Selection of Optimum Precision
« Accuracy, Computation Time, Power Consumption

— Trans-Precision (e.g. FP20, FP21)
e Challenging Approach: e.g. AT + FPGA

 FEM with Local Adaptive Precision

— Precision changes on each element
 New ldea

— Heterogenuity, Stress Concentration,
Elastic-Plastic (Linear-NL), Separation

— Load In-Balancing in Parallel Computing
— Discussions in WCCM 2018 in NYC

e Towards “Appropriate Computing”

— Approximate Computing + Accuracy
Verification + Automatic Tuning (AT)




Current Status

 Proposal for FY. 2019 Accepted
e Osni Margues (LBNL, USA) will join in April 2019
— Japan-Germany-USA Collaboration

-

— We welcome French collaborators ! /\l A
reececerc]
* If you are a member, you can use: \
y y

— Oakforest-PACS (KNL) (U.Tokyo, Tsukuba)
— Tsubame 3 (Intel/BDW + NVIDIA P100) (Tokyo Tech)

— Oakbridge-CX (Intel/CLX Cluster) (U. Tokyo) (After
October 2019)
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ICPP 2019 in Kyoto

48th International Conference on Parallel Processin ¢
August 5-8, 2019
http.//www.icpp-conf.org/

Submission Open: February 01, 2019
Deadline for Submission (10-pages): April 15, 2019
Author Notification: May 17, 2019
Camera-Ready Due: June 07, 2019
’ INTERNATIONAL /
8 CONFERENCE ON/
B PARALLEL
- = PROCESSING

Invited Speakers

Depei Qian (Sun Yat-Sen University & Belthang Universi  ty, China)
Satoshi Sekiguchi (AIST, Japan)

Richard Vuduc (Georgia Tech, USA)
Please take your vacation in Japan this Summer




