
A	programming	paradigm	for	extreme	computational	
and	data	science	

Serge	G.	Petiton

serge.petiton@univ-lille1.fr

18/10/2017

Outline

• Introduction
• YML	for	computational	science	applications	
• TEZ	and	others	tools	for	data	science	computation
• YML	for	computational	and	data	science	distributed	

and	parallel	computing
• Conclusion

SPPEXA

18/10/2017

Outline

• Introduction
• YML	for	computational	science	applications	
• TEZ	and	others	tools	for	data	science	computation
• YML	for	computational	and	data	science	distributed	

and	parallel	computing
• Conclusion

SPPEXA

Toward	graph	of	parallel	tasks/components

• Communications	have	to	be	minimized	:	but	all	communications	have	not	the	
same	costs,	in	term	or	energy	and	time.	

• Latencies	between	farther	cores	will	be	very	time	consuming	:	global	
reduction	or	other	synchronized	global	operations	will	be	really	a	bottleneck.

• We	have	to	avoid	large	inner	products,	global	synchronizations,	and	others	
operations	involving	communications	along	all	the	cores.	Large	granularity	
parallelism	is	required	(cf.	CA	technics	and	Hybrid	methods).

• Graph	or	tasks/components	programming	allows	to	limit	these	
communications	only	between	the	allocated	cores	to	a	given	
task/components.	

• Communications	between	these	tasks	and	the	I/O	may	be	optimized	using		
efficient	scheduling	and	orchestration	strategies(asynchronous	I/O	and	others)

• Distributed	computing	meet	parallel	computing,	as	the	future	
super(hyper)computers	become	very	hierarchical	and	as	the	communications	
become	more	and	more	important.	Scheduling	strategies	would	have	to	be	
developed.

18/10/2017 SPPEXA

Toward	graph	of	tasks/components	
computing	and	other	computing	levels

• Each	task/component	may	be	an	existing	method/software	developed	for	a	large	part	
of	the	cores,	but	not	all	of	them	(then	classical	or	CA	methods	may	be	eficients)

• The	computation	on	each	core	may	use	multithread	optimizations	and	runtime	libraries

• Accelerator	programming	may	be	optimize	also	at	this	level.

• Then	we	have	the	following	levels	of	programming	and	computing	:

– Graph	of	components,	already	developed	or	new	ones,

– Each	component	is	run	on	a	large	part	of	the	computer,	on	a	large	number	of	cores
– On	each	processor,	we	may	program	accelerators,

– On	each	core,	we	have	a	multithread	optimisation.

• In	term	of	programming	paradigms,	we	propose	:	Graph	of	task	(Data	flow	
oriented)/SPMD	or	PGAS-like	or…/Data	parallelism

• We	have	to	allow	the	users	to	give	expertise	to	the	middleware,	runtime	system	and	
schedulers.	Scientific	end-users	have	to	be	the	principal	target	on	co-design	process.	
Frameworks	and	languages	have	to	consider	them	first.

18/10/2017 SPPEXA

18/10/2017

Outline

• Introduction
• YML	for	computational	science	applications	
• TEZ	and	others	tools	for	data	science	computation
• YML	for	computational	and	data	science	distributed	

and	parallel	computing
• Conclusion

SPPEXA

Some elements on YML

• YML1 Framework is dedicated to develop and run parallel and distributed
applications on Cluster, clusters of clusters, and supercomputers
(schedulers and middleware would have to be optimized for more integrated
computer – cf. “K” and OmnRPC for example).

• Independent from systems and middlewares
– The end users can reused their code using another middleware
– Actually the main system is OmniRPC3

• Components approach
– Defined in XML
– Three types : Abstract, Implementation (in FORTRAN, C or C++;XMP,..),

Graph (Parallelism)
– Reuse and Optimized

• The parallelism is expressed through a graph description language, named
Yvette (name of the river in Gif-sur-Yvette where the ASCI lab was). LL(1)
grammar, easy to parse.

• Deployed in France Belgium, Ireland, Japan (T2K, K), China, Tunisia, USA
(LBNL, TOTAL-Houston).

SPPEXA

Graph description language: Yvette
• Language keywords

– Parallel sections: par section1 // … // section N endpar
– Sequential Loops: seq (i:=begin;end)do … enddo
– Parallel Loops: par (i:=begin;end)do … enddo
– Conditionnal structure: if (condition) then … else … endif
– Synchronization: wait(event) / notify(event)
– Component call: compute NameOfComponent(args,..,..)

• 4 types de components :
– Abstracts
– Graphs
– Implementations
– Executions

Graph Granular
ity

Comuni
cations

Multi-
level

component Runtime
scheduler

Graph
dynamic

Multi-back
ends

DAG Large implicit yes yes YML	engine No	yet Yes

General up to	3	
already

OmniRPC+
XtermWeb

SPPEXA

From	a	Taxonomy	we	are	developing	:	

Graph (n dimensions)
of components/tasksYML

Begin node
End node
Graph node

Dependence

par
compute tache1(..);
notify(e1);

//
compute tache2(..); migrate matrix(..);
notify(e2);

//
wait(e1 and e2);
Par (i :=1;n) do

par
compute tache3(..);

notify(e3(i));
//
if(I < n)then

wait(e3(i+1));
compute tache4(..);
notify(e4);

endif;
//
compute tache5(..); control robot(..);
notify(e5); visualize mesh(…) ;
end par

end do par
//

wait(e3(2:n) and e4 and e5);
compute tache6(..);
compute tache7(..);

end par

Generic component node

18/10/2017 SPPEXA

Abstract	Component

<?xml version="1.0"	?>
<component	type="abstract" name="prodMat"		description=“Matrix	

Matrix	Product"	>
<params>
<param name="matrixBkk"		type="Matrix"	mode="in"	/>
<param name="matrixAki« type="Matrix"	mode="inout"	/>
<param name="blocksize"					type="integer"	mode="in"	/>
</params>

</component>

Future	:

<param name= "conv"		type=	" graph_param_float"	mode= "inout"	/>

SPPEXA

Implementation Component
<?xml version="1.0"?>
<component	type="impl"	name="prodMat"	abstract="prodMat"	description="Implementation

component	of	a	Matrix	Product">					
<impl lang="CXX">
<header	/>
<source>
<![CDATA[

int i,j,k;
double	**	tempMat;
//Allocation
for(k	=	0	;	k<	blocksize ;	k++)
for	(i	=	0	;i	<blocksize ;	i++)

for	(j	=	0	;j	<blocksize ;	j++)
tempMat[i][j]	=	tempMat[i][j]	+	matrixBkk.data[i][k]	*	matrixAki.data[k][j];

for	(i	=	0	;i	<	blocksize ;	i++)
for	(j	=	0	;j	<	blocksize ;	j++)

matrixAki.data[i][j]	=	tempMat[i][j];
//Desallocation

]]>
</source>

<footer />
</impl>

</component>
SPPEXA

Graph component of Block Gauss-Jordan Method

12

SPPEXA

YML Architecture

Development
Catalog

Workflow
Compiler

Component
Generator

Just-in-time
Scheduler

Data Repository Server
(DRS)

Binary
Generator

Middleware	client

Backend

Middleware YML	Worker

Execution
Catalog

Architecture of the 1.0.5 VersionSPPEXA

Multi-Level	Parallelism	Integration:	
YML-XMP

<TASK 2> <TASK	3> <TASK	4>

<TASK	5> <TASK	6>

<TASK	1>

<TASK	7>

NODE NODE NODE

NODE NODE NODE

for(i=0;i<n;i++){
for(j=0;j<n;j++){
tmp[i][j]=0.0;

#pragma	xmp	loop	(k)	on	t(k)
for(k=0;k<n;k++){
tmp[i][j]+=(m1[i][k]*m2[k][j]);

}}}
#pragma	xmp	reduction	(+:tmp)

Each	task	is	a	parallel	program	over	several	nodes.
XMP	language	can	be	used	to	descript	parallel	program	easily!

YML	provides	a	workflow	programming	
environment		and	high	level	graph	description	
language	called	YvetteML

OpenMP
GPGPU
etc...	

N	dimension	graphs	available

18/10/2017

YML/XMP/StarPu expriments on	T2K	in	Japan,	project FP3C

SPPEXA

XcalableMP (XMP),	as	example	of	
PGAS	language

• Directive-based	language	extension	for	scalable	and	performance-aware	
parallel	programming

• It	will	provide	a	base	parallel	programming	model	and	a	compiler	
infrastructure	to	extend	the	base	languages	by	directives.	

• Source	(C+XMP)	to	source	(C+MPI)	compiler

• Data	mapping	&	Work	mapping	using	template

#pragma	xmp	nodes	p(4)
#pragma	xmp	template	t(0:7)
#pragma	xmp	distribute	t(block)	onto	p
int a[8];
#pragma	xmp	align	a[i]	with	t(i)

int main(){
#pragma	xmp	loop	on	t(i)
for(i=0;i<8;i++)
a[i]	=	i;

a[]

node0

node1

node2

node318/10/2017 SPPEXA

Implementation	Component	Extension

• Topology	and	number	of	processors	are	declared	to	be	used	at	compile	and	run-time.

• Data	distribution	and	mapping	are	declared

• Automatic	generation	for	distributed	language	(XMP,	CAF,	...)

• Used	at	run-time	to	distribute	data	over	processes

<?xml version="1.0"?>
<component	type="impl"	name="Ex"	abstract="Ex"	description= "Example">					

<impl lang="XMP"	nodes="CPU:(5,5)"	libs="	"	>
<distribute>

<param template="	block,block "		name="A(100,100)	" align="[i][j]:(j,i)	" />
<param template="	block	"		name="Y(100);X(100)"	align="[i]:(i,*)	"/>	

</distribute>
<header	/>
<source>
<![CDATA[

/*	Computation	Code	*/							
]]>

</source>
<footer />

</impl>
</component>

18/10/2017 SPPEXA

Scheduling

• Language	for	graph	of	task	programming	exists,	but	performance	often	
depend	of	the	associated	middleware	and	scheduler	:	independent	for	the	
moment	of	the	supercomputers

• Scheduling,	runtime	systems	and	middleware-OS	are	crucial	to	propose	
efficient	programming	based	on	graph	of	tasks.

• The	duration	of	each	task	has	to	be	larger	that	the	time	to	schedule	the	
following	tasks	(smart	scheduling	would	take	more	time…)

• The	duration	of	each	time	has	to	be	enough	large	to	recover	anticipated		
data	migrations	and	other	data	movements

• We	need	the	graph	of	control	and	the	graph	of	data	to	propose	efficient	
communications	optimisations	and	task	allocations.

• We	really	exploit	technics	coming	from	distributed	computing	(on	large	
cluster	of	parallel	resources)	adapted	on	supercomputers	where	
throughputs	and	hierarchy	are	different.

• Fault	tolerance,	resilience	may	be	managed	by	the	scheduler	(Miwako’s
talk	March	12Th,	Houston)

18/10/2017 SPPEXA

p
A B = B A = I
Block Gauss-Jordan
Matrix size = N = p n

AI,J

B =
0

I

I0

0

0

I0

00

0 0

0

I

00

n

To invert a matrix
2N3 operations

Challenge : N = 106

18/10/2017 SPPEXA

2 2

2

2

2

3 3 3

333

33

2

2

1

1 Element Gauss-Jordan, LAPACK, cx =2n3 +O(n2)
A = +/- A B ; BLAS3, cx = 2 n3 – n2,

3

3 A = A – B C ; BLAS3, cx = 2n3

n2 64 bit floating point numbers

n

n

p

p

2

2 A = B

18/10/2017 SPPEXA

1 2 2

2

2

2

2

2

3 3 3

3

3 3 3

3 3

Each computing task : 1 up to 3 blocks
maximum n < (memory size of one pair) / 3
Up to (p-1)2 peers

18/10/2017 SPPEXA

1 2 2

2

2

2

2

2

3 3 3

3

3 3 3

3 3

•Computation of « new » blocks on peer which minimize communications
•« update » of block at step k, on peer who updated the block a step k-1
• data send to dedicate peer ASAP

18/10/2017 SPPEXA

Block-based Gauss-Jordan method

Matrix A Matrix B

p = 5 at the step k = 2

Read
Write

0
0

2.1

11 11 1

2.1

2.1

2.1

2.1

2.1

2.1

2.1

2.1

2.2
2.2 2.2

2.2
2.2

3.1

3.1

3.1

3.1

3.1

3.1

3.1

3.1
3.1 3.1

3.1 3.1

3.1 3.1

3.1

3.1

3.1

3.1

3.1

3.1

3.1

3.1

3.2

3.2

3.2 3.2

3.2

3.23.2

3.2

3.2

3.2

3.2
3.2

3.23.2

3.2

3.2

3.23.2

Sb

n

18/10/2017 SPPEXA

2p-1
A=AB, BLAS3

(p-1)2

A=AB-C, BLAS3

Element Gauss-Jordan

Element Gauss-Jordan

n2 double floating points = 8n2 bytes
One step of the Block Gauss-Jordan method ; p=4

18/10/2017 SPPEXA

1 2 2

2

22

2

3 3 3

3

3 3 3

3 3

Nevertheless, we can have in parallel computing from several
steps of the method.

We have to use an inter and intra steps dependency graph (3D
for Block Gauss-Jordan).

2

3

221

2

23

2

18/10/2017 SPPEXA

FP2C : YML-XMP
on the K computer at AICS

Processes management: OmniRPC Extension, on MPI
mpirun -n 1 -hostfile host.txt yml_scheduler

node-01 node-02 node-03

omrpc-
agent

mpi_comm_spawn

mpi_comm_spawn

sum.rex sum.rex

yml_
scheduler

kick

node-01
node-02
node-03
.....
(reserved	nodes)

request

request

mul.rex mul.rexmul.rex

mpi_comm_spawn

18/10/2017 SPPEXA

18/10/2017
Slide written by Miwako TSUJI, RIKEN/AICS

SPPEXA

18/10/2017

Jerome	Gurhen
Master’s	thesis	at	MDLS

SPPEXA

On	Poincarré,	MDLS	cluster	
Others	tests	on	K,	Romeo

X BG,	XMP,	1	bloc,

18/10/2017

Outline

• Introduction
• YML	for	computational	science	applications	
• TEZ	and	others	tools	for	data	science	computation
• YML	for	computational	and	data	science	distributed	

and	parallel	computing
• Conclusion

SPPEXA

18/10/2017 SPPEXA

18/10/2017 SPPEXA

18/10/2017 SPPEXA

18/10/2017 SPPEXA

18/10/2017

Outline

• Introduction
• YML	for	computational	science	applications	
• Data	migration	optimization	using	YML
• TEZ	and	others	tools	for	data	science	computation
• YML	for	computational	and	data	science	distributed	

and	parallel	computing
• Conclusion

SPPEXA

18/10/2017

Collaboration	with	Laurent	Bobelin

SPPEXA

18/10/2017 SPPEXA

18/10/2017 SPPEXA

18/10/2017 SPPEXA

“data”	type

18/10/2017 SPPEXA

Hadoop	

18/10/2017

Outline

• Introduction
• YML	for	computational	science	applications	
• TEZ	and	others	tools	for	data	science	computation
• YML	for	computational	and	data	science	distributed	

and	parallel	computing
• Conclusion

SPPEXA

18/10/2017

Conclusion

Graph	of	components	and	containers	programming	is	a	potential	
solution	for	extreme	computational	and	data	science	computing

Multi-level	programming,	including	PGAS	developed	software,	
would	be	a	solution	for	exascale computing

YML-XMP,	YML-XACC,	YML-TEZ	and	others	solutions	”proof”	the	
Interest	of	this		programming	paradigm,	experimenting	on	several	
Example.	SPPEXA/MYX	project	contributes	to	validate	this	
programming	programming	

HPC	+	”Data	Science””	+	exascale +	new	programming	paradigm	>>>	

Intelligent	Machine	Learning	(project	with	John	Wu,	LBNL)
SPPEXA

