MUST system applied to
high level language
approach in MYX project

Taisuke Boku
Deputy Director and HPC System Research Division Leader

Center for Computational Sciences, University of Tsukuba
(collaborated with Hitoshi Murai and Miwako Tsuji, R-CCS RIKEN)

2019/03/21 SPPEXA Workshop 2019 @ Versailles

MYX Project Consortium

« MUST Correctness Checking for YML and XMP Programes.

* International collaboration among Germany (DFG), Japan (JST), and France
(ANR).

« Part of the Priority Programme "Software for Exascale Computing" (SPPEXA) in
German.

» Partner from Germany (project coordinator)
- RWTH Aachen, IT Center and Institute for High
Performance Computing
- Prof. Matthias S. Mueller, Joachim Protze, Christian
Terboven
* Partner from Japan
- University of Tsukuba, Center for Computational
Sciences, and Advanced Institute of Computational
Science, RIKEN
- Prof. Taisuke Boku, Hitoshi Murai, Miwako Tsuiji
» Partner from France
- Maison de la Simulation
- Prof. Serge Petiton. Prof. Nahid Emad
2019/03/21 SPPEXA Workshop 2019 @ Versailles

MYX Project

» Background

 Errors in programs will increase in highly-parallel and complicated exascale
computing.
« Automatic correctness checking of programs is important.

« Goals

» higher productivity by scalable correctness checking
» targets: YML and/or XcalableMP (XMP)

« Components
« MUST: a correctness checking tool

* YML: a workflow language
« XMP: a PGAS language

Language and API elements for
scalable correctness checking

Validation, Method Application, Dissemination

2019/03/21 SPPEXA Workshop 2019 @ Versailles 3

MUST

« Correctness checking tool developed by RWTH Aachen
« can detect local and global errors in MPI/OpenMP programs.

* The latest version supports checking MPIl one-sided comms.

Application Process Tool
Processes/Threads

Application

MUST software stack

Local Analyses

MUST
Non-local
| (Generic Tool Infrastructu Analysis

MPI Library

2019/03/21 SPPEXA Workshop 2019 @ Versailles 4

Overview of MUST

int main(int argc, char** argv)

{

-

int rank, size, ;

MPI_Comm_rank (MPI_COMM_WORLD, &

MPI_Type con _ pe);

MPI Recv(buf,

l1ze-ran
MPI_ Send(buf, -, '

No MPI Init before first MPI-call

Fortran type in C

Recv-recv deadlock

Rank0: src=size (out of range)

Type not commited before use

Type not freed bofore end of main

Send 4 int, recv 2 int:truncation

No MPI_Finalize

~ -, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
=Tank, , MPI_COMM_WORLD) ;

printf("H m rank %d of %d\n",rank, size);

return ;

}

2019/03/21 SPPEXA Workshop 2019 @ Versailles 5

What’s X==i=MP 7

www.xXcalablemp.org

mDirective-hased PGAS extension for Fortran &G
 Proposed by XMP Spec. WG of PC Cluster Consortium.

* Ver. 1.4 spec. is available.

 Now ver. 2.0 (incl. C++ support) on the table.

/ Data Mapping

« Adopted by Post-K Projects. i
= Supports two parallelization models: e
+ Global-view (based on HPF-like Work i
data/work mapping directives) Mapping | 1gxmp
« Local-view (based on coarray) \w$xmp

= Allows mixture with MP1 and/or OpenMP.

nodes p(zfé)

template t(n,n)

distribute t(block,block) onto p
real a(n,n)

align a(i,j) with t(i,j)

shadow a(1,1)

reflect (a)

loop (i)\j) on t(i,j)

w = a(i-1\j) + a(i+1,j) + ...

2019/03/21 SPPEXA Workshop 2019 @ Versailles

Stencil Comm.

Example of a Global-view XMP Program

real, dimension(lx,ly,1lz) :: sr, se, ...

do iz =1, 1z-1

do iy = 1, ly

do ix = 1, 1x
wue = sm(ix,iy,iz) / sr(ix,iy,iz)
wul = sm(ix,iy,iz+1) / sr(ix,iy,iz+1)
wve = sn(ix,iy,iz) / sr(ix,iy,iz)

2019/03/21 SPPEXA Workshop 2019 @ Versailles 7

Example of a Global-view XMP Program

2019/03/21

I$xmp nodes p(npx,npy,npz)

I$xmp template (1x,ly,1z) :: t

I$xmp distribute (block,block,block) onto p ::

real, dimension(1lx,ly,1z)

I$xmp align (ix,iy,iz) with t(ix,iy,iz) ::
1$xmp& sr, se, sm, sp, sn, sl, ...

I¢$xmp shadow (1,1,1) ::
1$xmp& sr, se, sm, sp, sn, sl, ...

11 sr, se, ...

t

L data mapping

I$xmp reflect (sr, sm, sp, se, sh, sl) =

stencil communication

I$xmp loop (ix,iy,iz) on t(ix,iy,iz)
do iz = 1, 1z-1 \
do iy = 1, ly .
do ix = 1, 1x [— work mapping
wue = sm(ix,iy,iz) / sr(ix,iy,iz) (F)(]r(]”€3||()()F)S)
wul = sm(ix,iy,iz+1) / sr(ix,iy,iz+1)
wve = sn(ix,iy,iz) / sr(ix,iy,iz)
SPPEXA Workshop 2019 @ Versailles 8

Local-view Programming in XMP

« Coarray, a PGAS feature of Fortran 2008, is available in
XMP/C as well as in XMP/Fortran.

» Bassic idea: data declared as coarray can be accessed
by remote nodes.

XMP/Fortran XMP/C
1| real a(1024)[*], b(1024) 1|float a[l1024]:[*], b[1l024];
2(a(512:1024)[1] = b(1:512) 2(a[512:512]:[0] = b[0©:512];
3| sync all 3| xmp_sync_all(NULL);

1. Anarray ais declared as a coarray.

2. Alocal array section b(1:512) is put to a remote array section a(512:1024) on image 1.
3. A memory fence and barrier synchronization is performed.

2019/03/21 SPPEXA Workshop 2019 @ Versailles

XMPT Tool Interface

e ...Is a tool APl of XMP.
« Objective:
» providing a more generic tool APl of XMP.

» Basic ideas inspired by OMPT

 event- and callback-based

* Planned targets:

» Score-P / Scalasca (JSC)
» Extrae (BSC)

« MUST correctness checking tool (this project)
» efc.

2019/03/21 SPPEXA Workshop 2019 @ Versailles

10

Basic Design of XMPT

Callbacks are registered

through xmpt_set callback.

B At initialization ,
void xmpt_set_callback(...);

Provided by an XMP compiler. Provided by tools 7

void xmp_init(){ | void xmpt_initialize(...){ﬂ///
xmpt_initialize(...);"] xmpt _set callback(XMPT_BCAST/BEGIN, myx_bcast_begin);

\ xmpt set callback(XMPT_BCAST_END, myx bcast _end);

\

} AN

\
e

xmp_init invokes

void xmpt_initialize(...) __attribute__ ((weak));

xmpt_initialize.

|] AT eCICh eveﬂT The registered callbacks are invoked.

void xmp bcast(...){ void
(*xmpt_bcast_begin)(...);—”’* myx_bcast_begin(...);
xmp_bcast_body(...);
(*xmpt_bcast_end)(...); — void

} myx_bcast _end(...);

2019/03/21 SPPEXA Workshop 2019 @ Versailles

11

Correctness Checking of XMP Programs

* Errors in global directives

n = xmp_node_num() Error about collectiveness
I$xmp bcast (a(n¥ | inthe bcast directive

« Data race of coarrays

« XMPT events are defined for coarray accesses & syncs. as well as
XMP directives.

« MYX could detect it.
image 1 image 2

sync all sync all
a[1]+= .. | dafarace —a117] = ...

A data race may occur
when a coarray is accessed

in unordered segments in sync all sync all
different images.

2019/03/21 SPPEXA Workshop 2019 @ Versailles 12

XMP+YML and FP3C project

* FP3C: Framework and Programming for Post Petascale Computing
» a collaborative project between Japan and France
+ September. 2010 - March. 2014

» Various research fields and their integration
* Programming model and programming language design
Runtime libraries
Accelerator
Algorithm and mathematical libraries

+ efc...
P 4
i%s University of Tsukuba informatics g methematics E %’_I%K?
PR ,7W m Tokyr:m;mme of Technology
|
SUNITE
#._Fp3C G cen
o roup
B\ versiTi pE 07 EE =1 j(? =% _
JIVE k] Ly C——==r |
PRLSM YV[ARSAN”L[SV\W (;’ |Hl.UNTv1:5|n‘0|Tom‘o —;JQ-mvv-uI.-uvl»unl

©® ||

2019/0\HIS LS SPPEXA Workshop 2019 @ Versailles 13

Multi SPMD (mSPMD) Programming Model

i Heterogeneous
ey Node
GR |
forrleiloy Distributed A cru
Parallel A0

'NUMA Nod

task 1 4 a B
rest | Node Node Node Op
= Rl
<task 2>
S— D

<task 3> ‘ <task 4> |
En Enm Em

<task 10>

2019/03/21 SPPEXA Workshop 2019 @ Versailles 14

MUST+YML+XMP (MYX) ~ _mocston, communicator

Overview of execution of mSPMD programming model
NodeO Nodel Node? Node3 Node4

m MPI_ Comm_spawn MPI Comm_spawn
— N\~

remote programl

remote program?

<taskz2>
#pragma xmp loop on t(i)
#pragma xmp task on p(3)

)’

<

<taskl>

9 J9|Npayos |w

remote remote
program3 program4 <task3>

MPI| Send(:-

2019/03/21 SPPEXA Workshop 2019 @ Versailles 15

o
3

=
A
O
2
<
T
g
o

£

MUST+YML+XMP (MYX) ~ _mocston, communicator

Target of correctness check in execution of mSPMD programming model

Node(Nodel « Check user defined SPMD tasks (XMP, MPI) by MUST
* lIgnore the communication for workflow controls in the

m MPI_ Comm_spawn mlddlevvare
" ------------------

remote programl

remote program?

<task2>
#pragma xmp loop on t(i)
#pragma xmp task on p(3)

--II\/IPI Send(fask3”, .. S B e
""" arrier
e

remote remote (wait) (wait)
program3 program4 <task3>

MPI| Send(:-
<task4> MPI_Allreduce(---

2019/03/21 Apply the correctness check by MUST for each task 16

A

<taskl>

9 J9|Npayos |w

K1eaql| 1dIN-OdyIuwQ

MUST+YML+XMP (MYX): Implementation

 MUST+MPI / MUST+XMP : to check a single SPMD program

* mustrun —np n application.exe

* prepare a dedicated dynamic library for the application.exe, set the
environmental variables

. mp|r|un —np (n+1) application.exe: 1 process should be kept for the MUST
analysis

« MUST+YML+MPI/XMP: to check multiple SPMD program

 Instead of mustrun (mpirun), MPI_Comm_spawn is used to invoke remote SPMD
programs in mSPMD

« extend the middleware of workflow scheduler and the remote program
generator in mSPMD
 MPI_* functions in the Workflow control are replaced with PMPI_* functions
« MPI_Comm_spwan("prog"”, ..) = PMPI_Comm_spwan(“prog”, ;)
. preparo’rlon steps performed WIThIﬂ the mustrun script before mpirun should be
performed before starting a workflow

« set the environmental variables required by MUST manually (Originally, they are set by
the mustrun scprit)

« prepare a dedicated dynamic library to analyze each remote program

Experiments

* Repeat simple communications w/ a nd w/o error s in each
task of themSPMD Programming Model

* investigate the results when MUST is applied, or when MUST is not
applied
* investigate the overhead
« Experimental environment
* Intel Xeon CUP E5-2680 v3 @ 2.5GHz (24 core)

« DDR4-2133 Reg ECC (2GBx$)
 flat-MPI (up to 24 processes)

« Configurations:
« each task runs on 4 processes, 4 tasks are executed simultaneously
« each task runs on 10 processes, 2 tasks are executed simultaneously

Result

] mSPMD w/ MUST mSPMD wo MUST

Reduction - correct complete
Reduction - incorrect terminated reported
Pingpong - correct complete
Pingpong - incorrect complete reported

MUST OQutput, starting date: Tue Jan 29 13:38:44 2019.

complete
terminated
complete

complete

0 Error |Two collective calls that use an operation specified conflicting operations! This rank:-

[Details:

Two collective calls that use an operation specified conflicting
operations! This rank uses the operation: MPI_MAX. The conflicting
call that was executed at reference 1 uses the operation: MPI_MIN.

(Information on communicator: MPI_COMM _WORLD)
Note that collective matching was disabled as a result,
collectives won't be analysed for their correctness or blocking

state anymore. You should solve this issue and rerun Xour
2019/03/21 . . . PPEXA Workshop 2019 @ Ver
application with MUST.

>

Representative
location:
call MPI_Allreduce
(1st occurrence)

Hailles

References of a

reference 1 rank 2:
call MPI_Allreduce
occurrence)

representative process:

(1st

19

Experiments (overhead)

« MPI-pingpong w/ and w/o an error, w/ and w/o MUST
* MPI-adllreduce w/ and w/o an error, w/ and w/o MUST

« Relative execution time 1.008 :
based on the case that is MUST Overhead is small when there
w/o error, w/o MUST 1.006 IS NO error

1.004

1.002

1
Bettero.998 I I I I I I
0.996

pingpong 4x4 pingpong 10x2 allreduce 4x4 allreduce 10x2

m NoError-NoMust m NoError-Must m Error-NoMust — m Error-Must
2019/03/21 SPPEXA Workshop 2019 @ Versailles 20

Conclusion

« MYX: an international collaborative project for higher productivity in exascale
computing. Runfime correctness check by MUST tor multi SPMD Programming
Model by YML+XMP

« MUST is a correctness checking tool.
* YML is a workflow language (to be presented by Miwako)
« XMP is a directive-based PGAS extension for Fortran & C supporting the global- and
local-view programming.
« XMP+MUST
« XMP provides an interfere, XMPT, for performance tools

« MUST uses the XMPT and check the correctness of XMP

« XMP+YML
» Tasks written in XMP of a workflow managed by YML

e MUST+YML+XMP
» The task generator and middleware in mSPMD have been extended
= Scalable, reliable programming model with high productively
Scalable : Combination of multiple-SPMDs by YML and XMP
Reliable : Fault-detection and recovery are supported
High Productively : XMP, YML are easier than C+MPI
MUST and XMPT provide a debug tool for SPMD

