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MYX Project Consortium

« MUST Correctness Checking for YML and XMP Programes.

* International collaboration among Germany (DFG), Japan (JST), and France
(ANR).

« Part of the Priority Programme "Software for Exascale Computing" (SPPEXA) in
German.

» Partner from Germany (project coordinator)
- RWTH Aachen, IT Center and Institute for High
Performance Computing
- Prof. Matthias S. Mueller, Joachim Protze, Christian
Terboven
* Partner from Japan
- University of Tsukuba, Center for Computational
Sciences, and Advanced Institute of Computational
Science, RIKEN
- Prof. Taisuke Boku, Hitoshi Murai, Miwako Tsuiji
» Partner from France
- Maison de la Simulation
- Prof. Serge Petiton. Prof. Nahid Emad
2019/03/21 SPPEXA Workshop 2019 @ Versailles




MYX Project

» Background

 Errors in programs will increase in highly-parallel and complicated exascale
computing.
« Automatic correctness checking of programs is important.

« Goals

» higher productivity by scalable correctness checking
» targets: YML and/or XcalableMP (XMP)

« Components
« MUST: a correctness checking tool

* YML: a workflow language
« XMP: a PGAS language

Language and API elements for
scalable correctness checking

Validation, Method Application, Dissemination
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MUST

« Correctness checking tool developed by RWTH Aachen
« can detect local and global errors in MPI/OpenMP programs.

* The latest version supports checking MPIl one-sided comms.

Application Process Tool
Processes/Threads

Application

MUST software stack

Local Analyses

MUST
Non-local
| (Generic Tool Infrastructu Analysis

MPI Library
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Overview of MUST

int main(int argc, char** argv)

{

-

int rank, size, ;

MPI_Comm_rank (MPI_COMM_WORLD, &

MPI_Type con _ pe);

MPI Recv(buf,

l1ze-ran
MPI_ Send(buf, -, '

No MPI Init before first MPI-call

Fortran type in C

Recv-recv deadlock

Rank0: src=size (out of range)

Type not commited before use

Type not freed bofore end of main

Send 4 int, recv 2 int:truncation

No MPI_Finalize

~ -, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
=Tank, , MPI_COMM_WORLD) ;

printf("H m rank %d of %d\n",rank, size);

return ;

}
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What’s X==i=MP 7

www.xXcalablemp.org

mDirective-hased PGAS extension for Fortran &G
 Proposed by XMP Spec. WG of PC Cluster Consortium.

* Ver. 1.4 spec. is available.

 Now ver. 2.0 (incl. C++ support) on the table.

/ Data Mapping

« Adopted by Post-K Projects. i
= Supports two parallelization models: e
+ Global-view (based on HPF-like Work i
data/work mapping directives) Mapping | 1gxmp
« Local-view (based on coarray) \w$xmp

= Allows mixture with MP1 and/or OpenMP.

nodes p(zfé)

template t(n,n)

distribute t(block,block) onto p
real a(n,n)

align a(i,j) with t(i,j)

shadow a(1,1)

reflect (a)

loop (i)\j) on t(i,j)

w = a(i-1\j) + a(i+1,j) + ...
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Example of a Global-view XMP Program

real, dimension(lx,ly,1lz) :: sr, se, ...

do iz =1, 1z-1

do iy = 1, ly

do ix = 1, 1x
wue = sm(ix,iy,iz ) / sr(ix,iy,iz )
wul = sm(ix,iy,iz+1) / sr(ix,iy,iz+1)
wve = sn(ix,iy,iz ) / sr(ix,iy,iz )
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Example of a Global-view XMP Program

2019/03/21

I$xmp nodes p(npx,npy,npz)

I$xmp template (1x,ly,1z) :: t

I$xmp distribute (block,block,block) onto p ::

real, dimension(1lx,ly,1z)

I$xmp align (ix,iy,iz) with t(ix,iy,iz) ::
1$xmp& sr, se, sm, sp, sn, sl, ...

I¢$xmp shadow (1,1,1) ::
1$xmp& sr, se, sm, sp, sn, sl, ...

11 sr, se, ...

t

L data mapping

I$xmp reflect (sr, sm, sp, se, sh, sl) =

stencil communication

I$xmp loop (ix,iy,iz) on t(ix,iy,iz)
do iz = 1, 1z-1 \
do iy = 1, ly .
do ix = 1, 1x [— work mapping
wue = sm(ix,iy,iz ) / sr(ix,iy,iz ) (F)(]r(]”€3||()()F)S)
wul = sm(ix,iy,iz+1) / sr(ix,iy,iz+1)
wve = sn(ix,iy,iz ) / sr(ix,iy,iz )
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Local-view Programming in XMP

« Coarray, a PGAS feature of Fortran 2008, is available in
XMP/C as well as in XMP/Fortran.

» Bassic idea: data declared as coarray can be accessed
by remote nodes.

XMP/Fortran XMP/C
1| real a(1024)[*], b(1024) 1|float a[l1024]:[*], b[1l024];
2(a(512:1024)[1] = b(1:512) 2(a[512:512]:[0] = b[0©:512];
3| sync all 3| xmp_sync_all(NULL);

1. Anarray ais declared as a coarray.

2. Alocal array section b(1:512) is put to a remote array section a(512:1024) on image 1.
3. A memory fence and barrier synchronization is performed.
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XMPT Tool Interface

e ...Is a tool APl of XMP.
« Objective:
» providing a more generic tool APl of XMP.

» Basic ideas inspired by OMPT

 event- and callback-based

* Planned targets:

» Score-P / Scalasca (JSC)
» Extrae (BSC)

« MUST correctness checking tool (this project)
» efc.
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Basic Design of XMPT

Callbacks are registered

through xmpt_set callback.

B At initialization ,
void xmpt_set_callback(...);

Provided by an XMP compiler. Provided by tools 7

void xmp_init(){ | void xmpt_initialize(...){ﬂ///
xmpt_initialize(...);"] xmpt _set callback(XMPT_BCAST/BEGIN, myx_bcast_begin);

\ xmpt set callback(XMPT_BCAST_END, myx bcast _end);

\

} AN

\
e

xmp_init invokes

void xmpt_initialize(...) __attribute__ ((weak));

xmpt_initialize.

| ] AT eCICh eveﬂT The registered callbacks are invoked.

void xmp bcast(...){ void
(*xmpt_bcast_begin)(...);—”’* myx_bcast_begin(...);
xmp_bcast_body(...);
(*xmpt_bcast_end)(...); — void

} myx_bcast _end(...);
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Correctness Checking of XMP Programs

* Errors in global directives

n = xmp_node_num() Error about collectiveness
I$xmp bcast (a(n¥ | inthe bcast directive

« Data race of coarrays

« XMPT events are defined for coarray accesses & syncs. as well as
XMP directives.

« MYX could detect it.
image 1 image 2

sync all sync all
a[1]+= .. | dafarace —a117] = ...

A data race may occur
when a coarray is accessed

in unordered segments in sync all sync all
different images.
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XMP+YML and FP3C project

* FP3C: Framework and Programming for Post Petascale Computing
» a collaborative project between Japan and France
+ September. 2010 - March. 2014

» Various research fields and their integration
* Programming model and programming language design
Runtime libraries
Accelerator
Algorithm and mathematical libraries

+ efc...
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Multi SPMD (mSPMD) Programming Model

i Heterogeneous
ey Node
GR |
forrleiloy Distributed A cru
Parallel A0

'NUMA Nod

task 1 4 a B
rest | Node Node Node Op
= Rl
<task 2>
S— D

<task 3> ‘ <task 4> |
En Enm Em

<task 10>
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MUST+YML+XMP (MYX) ~ _mocston,  communicator

Overview of execution of mSPMD programming model
NodeO Nodel Node? Node3 Node4

m MPI_ Comm_spawn MPI Comm_spawn
_—_ N\~

remote programl

remote program?

<taskz2>
#pragma xmp loop on t(i)
#pragma xmp task on p(3)

)’

<

<taskl>

9 J9|Npayos |w

remote remote
program3 program4 <task3>

MPI| Send(:-
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MUST+YML+XMP (MYX) ~ _mocston,  communicator

Target of correctness check in execution of mSPMD programming model

Node( Nodel « Check user defined SPMD tasks (XMP, MPI) by MUST
* lIgnore the communication for workflow controls in the

m MPI_ Comm_spawn mlddlevvare
" ------------------

remote programl

remote program?

<task2>
#pragma xmp loop on t(i)
#pragma xmp task on p(3)

--II\/IPI Send( fask3”, .. S B e
""" arrier
e

remote remote (wait) (wait)
program3 program4 <task3>

MPI| Send(:-
<task4> MPI_Allreduce(---
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MUST+YML+XMP (MYX): Implementation

 MUST+MPI / MUST+XMP : to check a single SPMD program

* mustrun —np n application.exe

* prepare a dedicated dynamic library for the application.exe, set the
environmental variables

. mp|r|un —np (n+1) application.exe: 1 process should be kept for the MUST
analysis

« MUST+YML+MPI/XMP: to check multiple SPMD program

 Instead of mustrun (mpirun), MPI_Comm_spawn is used to invoke remote SPMD
programs in mSPMD

« extend the middleware of workflow scheduler and the remote program
generator in mSPMD
 MPI_* functions in the Workflow control are replaced with PMPI_* functions
« MPI_Comm_spwan("prog"”, ..) = PMPI_Comm_spwan(“prog”, ;)
. preparo’rlon steps performed WIThIﬂ the mustrun script before mpirun should be
performed before starting a workflow

« set the environmental variables required by MUST manually (Originally, they are set by
the mustrun scprit)

« prepare a dedicated dynamic library to analyze each remote program



Experiments

* Repeat simple communications w/ a nd w/o error s in each
task of themSPMD Programming Model

* investigate the results when MUST is applied, or when MUST is not
applied
* investigate the overhead
« Experimental environment
* Intel Xeon CUP E5-2680 v3 @ 2.5GHz (24 core)

« DDR4-2133 Reg ECC (2GBx$)
 flat-MPI (up to 24 processes)

« Configurations:
« each task runs on 4 processes, 4 tasks are executed simultaneously
« each task runs on 10 processes, 2 tasks are executed simultaneously



Result

] mSPMD w/ MUST mSPMD wo MUST

Reduction - correct complete
Reduction - incorrect terminated reported
Pingpong - correct complete
Pingpong - incorrect complete reported

MUST OQutput, starting date: Tue Jan 29 13:38:44 2019.

complete
terminated
complete

complete

0 Error |Two collective calls that use an operation specified conflicting operations! This rank:-

[Details:

Two collective calls that use an operation specified conflicting
operations! This rank uses the operation: MPI_MAX. The conflicting
call that was executed at reference 1 uses the operation: MPI_MIN.

(Information on communicator: MPI_COMM _WORLD)
Note that collective matching was disabled as a result,
collectives won't be analysed for their correctness or blocking

state anymore. You should solve this issue and rerun Xour
2019/03/21 . . . PPEXA Workshop 2019 @ Ver
application with MUST.

>

Representative
location:
call MPI_Allreduce
(1st occurrence)

Hailles

References of a

reference 1 rank 2:
call MPI_Allreduce
occurrence)

representative process:

(1st
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Experiments (overhead)

« MPI-pingpong w/ and w/o an error, w/ and w/o MUST
* MPI-adllreduce w/ and w/o an error, w/ and w/o MUST

« Relative execution time 1.008 :
based on the case that is MUST Overhead is small when there
w/o error, w/o MUST 1.006 IS NO error

1.004

1.002

1
Bettero.998 I I I I I I
0.996

pingpong 4x4 pingpong 10x2 allreduce 4x4 allreduce 10x2

m NoError-NoMust  m NoError-Must  m Error-NoMust — m Error-Must
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Conclusion

« MYX: an international collaborative project for higher productivity in exascale
computing. Runfime correctness check by MUST tor multi SPMD Programming
Model by YML+XMP

« MUST is a correctness checking tool.
* YML is a workflow language (to be presented by Miwako)
« XMP is a directive-based PGAS extension for Fortran & C supporting the global- and
local-view programming.
« XMP+MUST
« XMP provides an interfere, XMPT, for performance tools

« MUST uses the XMPT and check the correctness of XMP

« XMP+YML
» Tasks written in XMP of a workflow managed by YML

e MUST+YML+XMP
» The task generator and middleware in mSPMD have been extended
= Scalable, reliable programming model with high productively
Scalable : Combination of multiple-SPMDs by YML and XMP
Reliable : Fault-detection and recovery are supported
High Productively : XMP, YML are easier than C+MPI
MUST and XMPT provide a debug tool for SPMD



