
Center for Computational Sciences, Univ. of Tsukuba

Taisuke Boku
Deputy Director, Center for Computational Sciences

University of Tsukuba

Overview of MYX
(MUST correctness checking for YML and XMP)

2017/10/181 SPPEXA Workshop Versailles

Project partner organizations: RWTH Aachen University, Germany
Maison de la Simulation, France
University of Tsukuba, Japan

Center for Computational Sciences, Univ. of Tsukuba

Motivation

2

Center for Computational Sciences, Univ. of Tsukuba

Consortium

3

n MYX builds on successful preliminary work and collaboration:
n FP3C: French-Japanese collaboration on YML and XMP for over 10 years
n JST-CREST: Japanese Exascale research program supporting XMP
n MUST: scalable correctness checking tool for MPI (and OpenMP)

Partner from Germany (project coordinator)
RWTH Aachen University
IT Center and Institute for High Performance Computing
Prof. Matthias S. Mueller, Joachim Protze,
Christian Terboven

Partner from Japan
University of Tsukuba, Center for Computational Sciences,
and Advanced Institute of Computational Science, RIKEN
Prof. Taisuke Boku, Hitoshi Murai, Miwako Tsuji

Partner from France
Maison de la Simulation
Prof. Serge Petiton. Prof. Nahid Emad

Center for Computational Sciences, Univ. of Tsukuba

Research Challenges and Project Results

4

n The more parallelism expressed, the higher the chance of errors being made
n Time of programming error search and fix: productivity loss!

n Automatic correctness checking may be used to avoid that

n MYX objectives are
n enable productivity improvements by means of scalable correctness checking
n of YML- and XMP-programs

n XMP: PGAS, with both global-view and local-view
n YML: graph of components language

n guide the development of future programming
models

n MYX will result in
n a clear guidance how to limit the

risk to introduce errors,
n how to best express parallelism to

catch errors at runtime,
n extended and scalable correctness

checking methods, including PGAS

Center for Computational Sciences, Univ. of Tsukuba

Initial results for defect classification
n Degree of non-determinism:

n Strict rules minimize “design issues“ à detection of issues
n Loose rules provide more freedom in application / algorithm

n More constraints à issues can be detected at compile time/runtime
n Classification of constraints as static, dynamic or global properties

n Exercised for XMP:
n Static constraints can be analyzed at compile time
n Dynamic constraints can be analyzed at runtime
n Global constraints can be analyzed at runtime with global knowledge

n Memory model:
n How is synchronization defined?
n What is the intended behavior for unsynchronized memory access?

5

Center for Computational Sciences, Univ. of Tsukuba

How many errors can you spot in this tiny example?
#include <mpi.h>
#include <stdio.h>

int main (int argc, char** argv)
{

int rank, size, buf[8];

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);

MPI_Datatype type;
MPI_Type_contiguous (2, MPI_INTEGER, &type);

MPI_Recv (buf, 2, MPI_INT, size - rank, 123, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Send (buf, 2, type, size - rank, 123, MPI_COMM_WORLD);

printf ("Hello, I am rank %d of %d.¥n", rank, size);

return 0;
}

At least 8 issues in this code example

Center for Computational Sciences, Univ. of Tsukuba

How many errors can you spot in this tiny example?
#include <mpi.h>
#include <stdio.h>

int main (int argc, char** argv)
{

int rank, size, buf[8];

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);

MPI_Datatype type;
MPI_Type_contiguous (2, MPI_INTEGER, &type);

MPI_Recv (buf, 2, MPI_INT, size - rank, 123, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Send (buf, 2, type, size - rank, 123, MPI_COMM_WORLD);

printf ("Hello, I am rank %d of %d.¥n", rank, size);

return 0;
}

No MPI_Init before first MPI-call
Fortran type in C

Recv-recv deadlock
Rank0: src=size (out of range)
Type not committed before use

Type not freed before end of main
Send 4 int, recv 2 int: truncation

No MPI_Finalize before end of main

Center for Computational Sciences, Univ. of Tsukuba

Overview of defect classification from tiny MPI example

8

Static Dynamic

Local Fortran Type in C MPI_Init before first MPI call
Rank out of range
Type not committed before use
Type not freed before finalize
No call to MPI_Finalize

Global Recv-Recv Deadlock
Type matching in messages

Center for Computational Sciences, Univ. of Tsukuba

Examples of defect classification for XMP

9

Static Dynamic
Local l async-id must be of type

default integer
l array-name must be

declared before align
directive

l The node set specified in the
on clause must be a subset
of the parent node set.

l The source node specified by
the from clause must belong
to the node set specified by
the on clause of bcast.

Global l Collective consistency
l Deadlock
l Co-array data race

Center for Computational Sciences, Univ. of Tsukuba

Abstract data / controlflow for correctness tools

10

Parallel language domain:

- Synchronization
- Parallel constructs
- Data access

Parallel tool domain:

- Synchronization
- Concurrency
- Dependencies
- Memory access

Parallel tool domain :

- Report of data races
- Report of dead locks
- Report of performance issue

Parallel language domain:

- Report of data races
- Report of dead locks
- Report of performance issue

Transformation

Transformation

Analysis

Abstraction layer:
Event notification

Abstraction layer:
Source information

Center for Computational Sciences, Univ. of Tsukuba

Application Execution with XMP/YML

mpirun

remote program1

<task 1>

remote program2

<task 2>

<task 3>

(wait) (wait)

remote
program3

<task 4>

remote
program4

<task 5>

MPI_Comm_spawn

request
<task2>

request
<task3>

invocation communication
node1 node2

ym
l_schdduler&

O
m

niR
PC-M

PI library

Between scheduler
and MPI

Center for Computational Sciences, Univ. of Tsukuba

Outline of XcalableMP (XMP) language
n Execution model: SPMD (=MPI)
n Two programming model on data view

n Global View (PGAS): based on data parallel concept, directives similar to OpenMP is
used for data and task distribution (easy programming)

n Local View (Coarray): based on local data and explicit communication (easy
performance tuning)

n OpenMP-like directives
n Incremental parallelization from original sequential code
n Low cost for parallelization -> high productivity

n Not “fully automatic parallelization”, but user must do:
n Each node processes the local data on that node
n User can clearly imagine the data distribution and parallelization for easiness of tuning
n Communication target of variables (arrays) and partitions can be simply specified
n Communication point is specified by user, in easy manner

n Running on many platforms: K Computer, PC clusters, Fujitsu MPP
➙ planned to run also on Post-K Computer

2014/11/07

CODESIGN2014@Guangzhou
12

Center for Computational Sciences, Univ. of Tsukuba

XMPT Tool I/F
n A tool API of XMP (including XACC)
n Objective:

n providing a more generic tool API of XMP.

n Basic ideas inspired by OMPT (OpenMP Tools API)
n event- and callback-based

n Planned targets:
n MUST correctness checking tool (SPPEXA)
n Score-P / Scalasca (JSC)
n Extrae (BSC)
n etc.

13
SPPEXA Workshop

Center for Computational Sciences, Univ. of Tsukuba

Basic Design of XMPT

14

void xmp_init(){
xmpt_initialize(...);

...
}

void xmp_bcast(...){
(*xmpt_bcast_begin)(...);
xmp_bcast_body(...);
(*xmpt_bcast_end)(...);

}

void xmpt_initialize(...){
xmpt_set_callback(XMPT_BCAST_BEGIN, myx_bcast_begin);
xmpt_set_callback(XMPT_BCAST_END, myx_bcast_end);
...

}

void xmpt_set_callback(...);

void xmpt_initialize(...) __attribute__((weak));

n At initialization

xmp_init invokes
xmpt_initialize.

Callbacks are registered
through xmpt_set_callback.

n At an event
void
myx_bcast_begin(...);

void
myx_bcast_end(...);

The registered
callbacks are invoked.

Provided by toolsProvided by an XMP compiler.

SPPEXA Workshop

Center for Computational Sciences, Univ. of Tsukuba

List of XMPT Events

n xmpt_event_task_begin
n xmpt_event_task_end
n xmpt_event_tasks_begin
n xmpt_event_tasks_end
n xmpt_event_loop_begin
n xmpt_event_loop_end
n xmpt_event_array_begin
n xmpt_event_array_end
n xmpt_event_reflect_begin
n xmpt_event_reflect_begin_async
n xmpt_event_reflect_end
n xmpt_event_gmove_begin
n xmpt_event_gmove_begin_async
n xmpt_event_gmove_end
n xmpt_event_barrier_begin

SPPEXA Workshop
15

• xmpt_event_barrier_end

• xmpt_event_reduction_begin

• xmpt_event_reduction_begin_async

• xmpt_event_reduction_end

• xmpt_event_bcast_begin

• xmpt_event_bcast_begin_async

• xmpt_event_bcast_end

• xmpt_event_wait_async_begin

• xmpt_event_wait_async_end

• xmpt_event_coarray_remote_write

• xmpt_event_coarray_remote_read

• xmpt_event_coarray_local_write

• xmpt_event_coarray_local_read

• xmpt_event_sync_memory_begin

• xmpt_event_sync_memory_end

• xmpt_event_sync_all_begin

• xmpt_event_sync_all_end

• xmpt_event_sync_image_begin

• xmpt_event_sync_image_end

• xmpt_event_sync_images_all_begin

• xmpt_event_sync_images_all_end

• xmpt_event_sync_images_begin

• xmpt_event_sync_images_end

coarray events

Center for Computational Sciences, Univ. of Tsukuba

Correctness Checking of XMP Programs Using
XMPT

n Errors in the XMP directives

n Data races of coarrays
n MUST could detect data races of coarrays using additional

XMPT events on coarray accesses and image control
statements.

SPPEXA Workshop
16

n = xmp_node_num()
!$xmp bcast (a(n))

An error in collectiveness of
the bcast directve

sync all
a[1] = ...
sync all

sync all
a[1] = ...
sync all

image 1 image 2

data raceAccesses of a coarray on
multiple images in
unordered segments
could causes data race.

Center for Computational Sciences, Univ. of Tsukuba

Summary and outlook
n Improved programming models and environments are

important for Exascale and beyond.
n Project goals and achievements of MYX

n Extend correctness checking to XMP and YML
n Improve productivity of XMP based codes toward Post-K Computer

and many platforms
n Improve existing parallel programming paradigms based on MPI
n Develop high level abstractions to express parallelism based on YML

scheduler/dispatcher with XMP

17

