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We Live in Interesting 
Times  

Development of large-scale applications is 
challenging. It is becoming much more so. 
❑ Increasing complexity of computer hardware 

❑ Diversity in large-scale platforms 
❑ Growing diversity of applications and users 

❑ Traditional scientific computations, AI, 
combination, workflows 

❑ Increasing need for dynamic program adaptation 
❑ To handle changes in computation or 

resources 
❑ Changing expectations on part of application 

developers 
❑ Python, TensorFlow, PyTorch, … 

❑ Scalable performance, performance portability, 
productivity; power saving



Evolution of DOE Leadership Class Systems 

Name Titan Mira Cori Theta Summit Sierra Perlmutter
System peak 
(PF)

27 10 Haswell: 2.81 
KNL: 29.5

11.69 200 125

Peak Power 
(MW)

9 4.8 4.2 1.7 13.3 6

Total system 
memory

710TB 768 TB Haswell:  
298.5 TB DDR4     
KNL: 1.06 PB 
DDR4 +  
High Bandwidth 
Memory

1475 TB:  
843 DDR4 +  
70 MCDRAM 
+ 562 SSD 

2.8 PB:   
DDR4, 
HBM2, 
PB persistent, 
memory

1.4 PB 
DDR4, 
HBM2, 
PB persistent, 
memory 

Node 
performance 
(TF)

1.452 0.204 Haswell: 1.178 
KNL: 3.046

2.66 >40

Node Processors AMD Opteron 
NVIDIA K20x

64-bit 
PowerPC 
A2

Intel Haswell 
Intel KNL

Intel KNL 2 POWER9  
6 NVIDIA Volta 
GPUs

2 POWER9  
4 NVIDIA Volta 
GPUs

AMD EPYC 
(Milan) 
NVIDIA GPU

System Size 
(nodes)

18,688 
nodes

49,152 Haswell; 2,388 
nodes 
KNL: 9,688 nodes

4,392 nodes ~4600 nodes 4320 > 4000 node 
CPU-only 
partition

System 
Interconnect

Gemini 5D Torus Aries Aries Dual Rail EDR-
IB

Dual Rail EDR-
IB

Cray Slingshot

File System 32 OB 
1 TB/s 
Lustre

26 PB 
300 GB/s 
GPFS

28 PB 
>700 GB/s 
Lustre

10 PB 
744 GB/s 
Lustre

120 PB 
1 TB/s 
GPFS

30 PB 
4 TB/s 
Lustre

Accelerated node



• Outside of quantum, neuromorphic, architectures expected to evolve into “extreme” versions of today’s 
systems 

• 3D stacked processors, less cache, more on-die memory, more specialization, optical interconnects 
• We need programming languages that meet tomorrow’s needs as well as today’s application goals 

• Address needs of systems with diverse, extremely complex memory hierarchies 
• Able to handle more (and more kinds of) devices and high core counts 
• Facilitate interoperability, especially with internode approaches

FPGA DNN

Nodes N – N+M

More cores, less data 
sharing

Specialization

Faster, 
larger 

networks

Exascale and Beyond 



IESP Programming Models 
International Exascale Software Project, 2010-11

Proposed timeline

Interoperability 
among existing 

programming models

Fault-tolerant MPI

Standard programming model 
for  

heterogeneous nodes 

System-wide high-level 
programming model 

Exascale programming 
models implemented

Exascale programming 
model(s) adopted

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Your M
etric

Candidate exascale 
programming models 

defined



A Layered Programming Approach

DSLs, other means for application scientists to provide information

Adapted versions of today’s portable parallel programming APIs 
(MPI, OpenMP, PGAS, Charm++)

Maybe some non-portable low-level APIs (threads, CUDA, Verilog)

Machine code, device-level interoperability stds, powerful runtime

Computational 
Chemistry

Climate 
Research Astrophysics

New kinds 
of info

Familiar

Custom

Very  low-
level

Applications

Heterogeneous 
Hardware

…



Summit 



 
   
   

2 Power9s, 6 GPUs per node 

27,648 NVIDIA Tesla V100s, each 
with: 
• 5120 CUDA cores  
• 640 Tensor cores 
• 300 GB/s BW (NVLink 2.0) 
• 20MB registers, 16MB cache, 

16GB HBM2 @900 GB/s 
• 7.5 DP TFLOPS; 15 SP TFLOPS, 

120 FP16 TFLOPS 
Tensor cores do mixed precision 
multiply add of 4x4 matrices

 

 
  

 

 

   

  

  

  
  

 

 

  

  
 

 

The Modeling & Simulation community can benefit from 

utilizing mixed / reduced precision 

•   Eg: Possible to achieve 4x FP64 peak for 64bit LU on 

V100 with iterative mixed precision (Dongarra et al.)



Programming: HPC vs. DL
Nodes in a cluster

Processor

M

Processor

M

Processor

M

Network for Data Exchange

••••
••••
••••
• Shared Memory

C C C C C C

SMP Multicore Architecture

Bus or Switch Network

Programmed using MPI  Programmed using OpenMP

TensorFlow 
programming 
interface



Portable parallel programming 
since 1997 
• Compiler directives 

• Data, task, SIMD 
parallelism 

• Multicores, GPUs 

• User specifies the strategy, 
not the details 

Maintained by industry 
consortium 
• It is now easy for 

academics to join
The mission of the OpenMP ARB 
(Architecture Review Board) is to 
standardize directive-based multi-language 
high-level parallelism that is performant, 
productive and portable. 



OpenMP 4.5 – Accelerator Model

• OpenMP 4+ supports heterogeneous systems 
(accelerators/devices) 

• Accelerator model 
– Host device and attached 
– One or more ta      devices

GPU(s)Xeon Phi(s) –  
(Accelerator and self-hosted)

Host Device 
(CPU Multicore)

Single device attached
Multiple devices attached

With attached 
accelerator(s)



Case study: BerkeleyGW mini-application named GPP

• BerkeleyGW is a 
C++ application 
which computes 
the excited state 
properties of 
materials 

• GPP contains the 
self-energy 
computation: 
large matrix 
reductions over 
complex arrays 
in a single loop 
nest of 4 loops

Results from: Rahulkumar Gayatri, "A Case Study for 
Performance Portability Using OpenMP 4.5", WACCPD-18 

The OpenMP implementation with XL compiler achieves  
approximately the same run time as a tuned CUDA 
implementation

Chris Daley, NERSC



Emerging OpenMP Features

❑ New features in OpenMP 5.0 
❑ Memory model: deal with memory heterogeneity 

❑ “concurrent” directive: descriptive parallel method 

❑ Also support for unified memory, deep copy of data, metadirectives, task 
affinity, and more 

❑ Significant implementation effort to support these well

#pragma omp allocate(A) allocator(omp_high_bw_mem_alloc)

#pragma omp for order(concurrent)  for (int i = 0; i < N; i++) {…}



Extreme Heterogeneity: Memory 
Management

• Expect significantly more complex 
memory systems in the future 

• Programming environment innovations are required 
to cope with such complexity 

• Programming model 
– Provide high level data abstractions 
– Improve memory systems’ programmability 
– Integrate performance modeling 

• Compiler and runtime 
– Unified memory optimizations (prefetching, 

pinning) to avoid thrashing 
– Coarse grained data optimization 
– Better usage of hardware capabilities e.g. avoid 

caching of non-temporal accesses



OpenMP Loop Feature
• Work-sharing directive: split 

loop iterations among threads 

• Significant challenges: large 
reduction basic blocks, irregular 
accesses (e.g. a[b[i]]), deeply 
nested conditionals, deep 
copy / allocation at target 
(where is my data?) 

• Strategies vary per architecture

#pragma omp for order(concurrent)
for (i = 1; i < N; i++) {
   f(A,i);
}

thread3 thread4thread1 thread2

i=[1..N/4]

i=[N/4+1..N/2]

i=[N/2+1..3N/4]

i=[3N/4+1..N]

void f(double A[N+1], int i) {
  if (A[i] > 0.5)
    A[i] += i;
}

Where is A? 
Where should 

it be?



Model-driven, Composable and Multi-
Target Compiler Optimizations

Motivation: reduce 
performance gap 
between general 
purpose and domain 
specific compiler 
frameworks 

Impact: substantial 
performance 
improvements, 
reduced application 
tuning time

Martin Kong: To appear in ACM Programming Language 
Design and Implementation, PLDI’19



Kernel Fusion/Decomposition for Automatic GPU-
offloading

Motivation: automatic 
GPU-offloading 
capabilities in LLVM to 
maximize application 
performance and user 
productivity 

Impact: immediate 
benefit for medium to 
large scale 
mathematical libraries 
(e.g. Grid++ Lattice 
QCD parallel library)

Third Place, ACM Student Research Competition at the International 
Conference of Code Generation and Optimization (CGO’19, Washington 
DC) 
Alok Mishra, Martin Kong, Barbara Chapman 



 
Model-Driven  
Translation 
 

Cost models

Processor model
Cache model

Parallel model

Loop overhead

Parallel overhead

Machine cost

Cache cost

Reduction cost

Computational  
resource cost

Dependency  
latency cost
Register spill 

 cost

Cache cost
Operation cost

Issue cost
Mem_ref cost

TLB cost

HT3 BW vs Threads

BW
 

(M
B/

s)

0

4500

9000

Thread Configuration (# of remote + # of local threads)

1+22+12+21+33+14+11+42+33+23+34+22+45+11+53+42+55+26+11+64+43+56+22+64+53+66+35+54+6

4590,7893676,29872758,2258
5505,723

4134,1149
6758,7863

2451,7159
4898,5849

3676,1309

8906,8519

2108,68392574,9705

6046,2975
4286,8672

8119,3898

2167,1573

5231,9194
2697,74053567,48563064,6816

4546,6893
7083,3023

2255,98132402,6061

6033,2904
3551,39352691,892

4853,0811

1+2
2+1
2+2
1+3
3+1
4+1
1+4
2+3
3+2
3+3
4+2
2+4
5+1
1+5
3+4
2+5
5+2
6+1
1+6
4+4
3+5
6+2
2+6
4+5
3+6



Compilers

Programming 
Models

ML Models

Exploiting ML in Software Stack 

❑Design: determine best target 
machine given inherent application 
traits (memory or compute driven, 
accuracy?) 
❑Compiler/runtime support for 
stringent power caps 
❑Resiliency and fault tolerance: 
when and what to checkpoint? 
❑Compiler options and runtime 
features embody a large and 
complex optimization space 
❑Impact on application performance 
❑Different application classes 
require different optimization 
strategies

CPU

GPU

FPGA

Application 
Design

Resiliency / 
Fault Tolerance

HW + SW  
Selection



Changing Workloads 
Data Analytic Computing (DAC) and Modeling and Simulation 

(M&S)

Doug Kothe, Exascale Computing Project



Large Scale Petroleum: Combining HPC 
and Data Analytics

Seismic Data 
Processing and 
Interpretation

Reservoir 
Simulation

Oilfield Data Analytics

• A combination of Physics 
and Data Science



Scalable Learning Matters!

Large Hadron Collider

25GB/s, >200PB 

LSST

20TB/night, 73PB 

Transmission EM

3GB/s

ExaFEL (ECP)

10PB

MD Trajectories

~32PB / simulation

Meta-genomics

~15GB / sample



Machine Learning for Scientific 
Applications

• Today’s machine learning frameworks are not easy to scale 
• Expensive communication / synchronization in SGD  
• Significant effort optimizing frameworks for CPU, GPU 
• Use of OpenMP   
• Research making advances in distributed parallelization 

• State of art  
• TensorFlow, PyTorch,… 
• Heavy optimization of operations 
• Otherwise, much lacking in compiler technology 

• Language and compiler enhancements 
• Improved single node translation 
• Efficient translation of associated user code in Python 
• DSL features for enhanced ML? 
• Path toward integration with scientific application code? 
• Representation of data and computation flow for wholistic optimization?



ML at the Edge 
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Compressed data

Updated model

HPC / 
Cloud

Inference at (potentially many) edge devices, major training in central 
computer.  Regular updates of model must be sent back to edge.



One Size Fits All?  Tasks and Data Flow 
• Inspired by the data flow execution model (Dennis, 

1970s) 
– Cilk, TBB, OpenMP,… 
– Legion, HPX, Parsec,… 
– Google Cloud Dataflow, Tensorflow, …. 

- Not a “natural” approach for many applications 
- Implementations often forget data locality



The performance promise of task / 
dataflow runtimes is hampered by the 
lack of high-productivity systems that 
encourage their use 

Can we design a unified system for distributed scientific 
applications targeting tasking / dataflow runtimes?: 

❑ Implement compiler transformations that optimize 
programs for a variety of target runtimes (Legion, 
Concurrent Collections, ParSEC) and platforms 

❑ Design a common intermediate representation to 
allow for several input specifications: including 
sequential, explicitly parallel (e.g OpenMP) and  
domain specific languages 

❑ Embed topological information and exploit it to 
find optimal task and data mappings that take 
locality fully into account 

❑ Develop intra-node work and data partitioning 
strategies to exploit  multi-GPU execution 

❑ Can we extend this to include ML frameworks?

High-Performance and High-Productivity Programming With Task-Based 
Execution

C  
+ 

OMP

C 
(seq)

DSL

Task IR 

Legion CnC PaRSEC



Are We There Yet? 
• High Performance Computing, Cloud Computing, Edge 

Computing, Fog Computing 
– Computing anywhere, anytime, any devices 
– Extreme Heterogeneity, Deep Memory Hierarchy 
– Performance, Resilience, Elasticity, Productivity, Power 

• Data-driven, scientific and AI code in (peaceful?) co-
existence 

 
Gatew

ay
Gatew

ay
Gatew

ay

How do we program these complex systems?



Questions? 


