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Important Properties of Algorithms

§ Efficient Distribution of the compute 
data.

§ Minimum communication/ 
communication reducing algorithms

§ Increased precision is achieved adding 
extra computations (without restart) .

§ Fault-Tolerance achieved through  
adding extra computations 



Challenges

  To achieve excellent results scalability at 
all levels would be required:

Mathematical models level

Algorithmic level

Systems level



Monte Carlo Methods FOR  LINEAR ALGEBRA



Idea of the Monte Carlo method

Wish to estimate the quantity α

Define a random variable ξ

Where ξ has the mathematical expectation α

Take N independent realisations ξi of ξ

– Then 

– And according to the Law of Large Numbers (LLN)



Motivation: MC for Linear Algebra

Many scientific and engineering problems revolve around:

–  inverting a real n by n matrix (MI)

• Given B

• Find B-1

– solving a system of linear algebraic equations (SLAE)

• Given B and b

• Solve for x,  Bx = b

• Or find B−1 and calculate x = B−1b



Motivation cont.

Traditional direct Methods with dense matrices

– Gaussian elimination

– Gauss-Jordan

– Both take O(n3) steps

Time prohibitive if

– large problem size

– timely solution required



Monte Carlo Methods

Fast stochastic approximation

Very efficient in finding a quick rough estimation

– element or row of inverse matrix

– component of solution vector



Reason for using Monte Carlo

O(NT) steps to find an element of the

– inverse matrix B

– solution vector x

Where

– N Number of Markov Chains

– T length of Markov Chains

Independent of n - size of matrix or problem

Algorithms can be efficiently parallelised



Parallel Algorithms

Multi-tiered process

Using parallel Monte Carlo to find a 
rough inverse of B

Original algorithm for diagonally 
dominant matrices

Extension to the general case non-
diagonally dominant matrices 
with ||A|| < 1

Parallel iterative refinement to improve
accuracy and retrieve final inverse



Parallel Algorithm

Start with a diagonally dominant matrix ^B

Make the split ^B = D - B1

– D has only the diagonal elements of ^B

– B1 includes only off-diagonal elements

Compute A = D-1B1

If we had started with a matrix B that was not diagonally 
dominant then an additional splitting would have been made 
at the beginning, B = ^B - (^B - B), and a recovery section 
would be needed at the end of the algorithm to get 
B-1 from ^B-1



Parallel Algorithm cont.



Parallel Algorithm cont.



Parallel Algorithm cont.

Matrix Inversion using Markov Chain Monte Carlo



Refinement Process

Given a non-singular matrix     , and its inverse        , if we 
define                           then we perform the following steps for 
more accurate inverse computation:

Therefore,

Obviously we have,



Refinement  Process

The formula shows that An approaches A     when the 
convergence of the process is very rapid. We can estimate 
the error at step n of this procedure:

We see from the inequality that as long as the initial 
approximate inversion satisfies  the condition 
the number of correct decimal figures increases with a power



Parallel Algorithm cont.

Having used MC for inverting diagonally dominant matrices 
the obvious next extension is to see how this algorithm can be 
extended to invert general matrices. For this, assume the 
general case where ||B|| > 1 and consider the splitting

From this it is then necessary to work back and recover      
from        .

To do this an iterative process                                            is 
used on 



Hybrid VS. Deterministic Methods



Combination of Monte Carlo and SPAI

SPAI – SParse Approximate Inverse Preconditioner

– Computes a sparse approximate inverse M of given matrix A by 
minimizing ∥ AM − I ∥ in the Frobenius norm

– Explicitly computed and can be used as a preconditioner to an iterative 
method

– Uses BICGSTAB algorithm to solve systems of linear algebraic 
equations Ax = b

Sparse Monte Carlo Matrix Inverse Algorithm 

– Computes an approximate inverse by using Monte Carlo methods

– Uses an iterative filter refinement to retrieve the inverse



Experiments

Selected test sets 

– The University of Florida Sparse Matrix Collection

– Matrix Market

-  Other applications

Parameter and setting selection

– Computation of pre-conditioner to same accuracy

– Utilized in BiCGSTAB , GMRES or other solvers

– RHS generated from input matrix

Monte Carlo approach without refinement filter

– Rough inverse sufficient for quick convergence in most cases



Sparsity and computation

SPAI computes the Frobenius norm of the input matrix

– Workload depending on the size of the input matrix

Monte Carlo algorithm uses Markov Chains

– Independent of the size of the matrix

– length and number of chains important

– Original algorithm for dense matrices; extended to support general 
sparse cases

Experiments have been run using various sparsity (10%-90%)



Sparsity and computation cont.



MC vs  MSPAI



Test Matrices



Execution Time Breakdown

Figure 1. Execution time breakdown in a 16 cores 
execution.



Execution Time Breakdown

Figure 2. Execution time breakdown in a 256 cores 
execution.



Probability calculation

Figure 6. Error calculation when using Uniform and Almost 
Optimal distributions with 16 cores.



Employing Mixed MPI/OpenMP version



Mixed MPI/OpenMP

Figure 8. Scalability comparison for the two-step broadcast for a 
relatively  big matrix (3.5M x 3.5M)



MC vs MSPAI

Figure 9. Scalability comparison MSPAI and MC for 
matrix appu



MC vs MSPAI

Figure 10. Scalability comparison MSPAI and MC for 
matrix non-sym r5 a11.



MC vs MSPAI

Figure 11. Scalability comparison MSPAI and MC for matrix 
rdb2048.



Preconditioner calculation

Figure 12. Fastest execution time achieved during the 
preconditioner calculation.



GMRES  timing

Figure 13. Time required by the solver to find the solution for the 
preconditioned system.



Total time

Figure 14. Total time = Preconditioner construction time + Solver 
execution time.



Low discrepancy (quasirandom) sequences

 The quasirandom sequences are deterministic sequences constructed to be 
as uniformly distributed as mathematically possible (and, as a consequence, to 
ensure better convergence for the integration)

 The uniformity is measured in terms of discrepancy which is defined in the 
following way: For a sequence with N points in [0,1]s  define 

RN(J) = 1/N#{xn in J}-vol(J) for every J ⊂ [0,1]s

DN* = supE* |RN(J)|,  

E* - the set of all rectangles with a vertex in zero.

 A s-dimensional sequence is called quasirandom if

            DN* ≤ c(log N)s N-1

 Koksma-Hlawka inequality (for integration): 

                  ε[f] ≤ V[f] DN*  

 (where V[f] is the variation in the sense of Hardy-Kraus)

 The order of the error is О((log N)s N-1)
LSSC 2017, June 5-9, Sozopol



PRNs and QRNs



Some facts

Discrepancy of real random numbers:

D*N = O(N-1/2 (log log N)-1/2)

Klaus F. Roth (Fields medal 1958) proved the following lower 
bound for star discrepancy of N points in s dimensions:

D*N  ≥O(N-1 (log N)(s-1)/2)

Sequences (indefinite length) and point sets have different 
“best” discrepancies:

n Sequence: D*N  ≤ O(N-1 (log N)s-1)

n Point set: D*N  ≤ O(N-1 (log N)s-2)



LSSC 2017, June 5-9, Sozopol

Most often used sequences (Halton Sequence)

Let n be an integer presented in base p. The p-ary 
radical inverse function is defined as 

     

    where  p  is prime and  bi    comes from 

                                                                                          with 0   bi < p

An s-dimensional Halton sequence is defined as: 

with   p1  p2  …., ps   being relatively prime, and usually the first  s  
primes

 



Most often used sequences

In our computations we have used scrambled modified 
Halton sequence [Atanassov 2003]:

xn(i) = ∑j=0m imod (aj(i)kij+1 + bj(i),pi) pi–j-1

(scramblers bj(i), modifiers ki in [0, pi – 1] )

LSSC 2017, June 5-9, Sozopol



Most often used sequences (Sobol)

 Sobol sequence (1967)  {xn = (xn(1), xn(2), …, xn(s))}

 The j-th coordinate of the n-th point of s-dimensional Sobol 
sequence xn = (xn(1), xn(2), …, xn(s)) is generated through the 
recursion: 

    xn(j) = b1v1(j) ⊗ b2v2(j) ⊗… bwvw(j) 

where vi(j) is i-direction number for dimension j, and ⊗ is bit-by-bit 
exclusive-or operation (bi  are the coefficients of representation of n in 
base 2)

  How to determine  vi(j) : for each dimension a different primitive 
polynomial is chosen and its coefficients are used to define: 

     

     vi(j) = a1(j)vi-1(j) ⊗ … ⊗ adj -1(j)vi-dj +1(j) ⊗vi-dj(j) ⊗  vi-dj(j)/2dj, i > dj 

LSSC 2017, June 5-9, Sozopol
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Quasirandom Sequences and their scrambling

Unfortunately, the coordinates of the quasirandom sequence 
points  in high dimensions show correlations. A possible solution 
to this problem is the scrambling.

The purpose of scrambling: 

– To improve 2-D projections and the quality of quasirandom 
sequences in general

– To provide practical method to obtain error estimates for QMC

– To provide simple and unified way to generate quasirandom 
numbers for parallel computing environments

– To provide more choices of QRN sequences with better (often 
optimal) quality to be used in QMC applications



Scrambling techniques

Scrambling was first proposed by Cranley and Patterson (1979) who took 
lattice points and randomized them by adding random shifts to the 
sequences. Later, Owen (1998, 2002, 2003) and Tezuka (2002) 
independently developed two powerful scrambling methods through 
permutations

Although many other methods have been proposed, most of them are 
modified or simplified Owen or Tezuka schemes (Braaten and Weller, 
Atanassov, Matousek, Chi and Mascagni, Warnock, etc.)

There are two basic scrambling methods:

– Randomized shifting

– Digital permutations

(Permuting the order of points within the sequence)

The problem with Owen scrambling is its computational complexity
LSSC 2017, June 5-9, Sozopol



Scrambling

Digital permutations: Let (x(1)n, x(2)n, . . . , x(s)n) be any 
quasirandom point in [0, 1)s, and (z(1)n, z(2)n, . . . , z(s)n) 
is its scrambled version. Suppose each x(j)n has a b-ary 
representation x(j)n, =0. x(j)n1 x(j)n2 … x(j)nK, … with K 
defining the number of digits to be scrambled. Then

z(j)n = σ(x(j)n ), where σ={Φ1, …, ΦK} и Φi, is a 
uniformly chosen permutation of the digits {0,1,…,b-1}.

Randomized shifting has the form

zn = xn  + r (mod 1),

where xn is any quasirandom number in [0, 1)s and r is a 
single s-dimensional pseudorandom number.

LSSC 2017, June 5-9, Sozopol



Two-dimensional projection of Halton sequence and 
scrambled Halton sequence (dimension 3)

LSSC 2017, June 5-9, Sozopol



Two-dimensional projection of Halton sequence and scrambled Halton 
sequence (dimension 8) 

LSSC 2017, June 5-9, Sozopol



Two-dimensional projection of Halton sequence and scrambled Halton 
sequence (dimension 99)

LSSC 2017, June 5-9, Sozopol



Error estimate for QMC

Scrambling provides a practical method to obtain 
error estimates for QMC based by treating each 
scrambled sequence as a different and independent 
random sample from a family of randomly scrambled 
quasirandom numbers, thus allowing standard 
(Gaussian) confidence intervals to be considered.

QMC error for Markov chain based problems:

         δN (ζ(Q’)) ≤ V(ζ ∘ Γ-1). (D*N(Q))

 where Q = {γi} is a sequence of vectors in [0,1)sT, Q’ = 
{ωi} is a sequence of quasirandom walks generated 
from Q using the mapping Γ.

LSSC 2017, June 5-9, 
Sozopol
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MC vs QMC

Figure 15. MC and QMC  preconditioners execution time 



MC vs QMC

Figure 16. MC and QMC  preconditioners execution time 



MC vs QMC

Figure 17. MC and QMC solver times 



Further Improvements

Discarding elements of the matrix



Further Improvements

 Total  time: preconditioner + solver



Further Improvements



Further  Work

MC stochastic projection approach

GPU based implementations

Further experiments and comparisons



Conclusions



Conclusions and  Future Work

MC and QMC provide good quality preconditioners

Need to enhance the reuse of sub-chains in longer Markov 
Chains 

quasi-Monte Carlo and MC deliver the same quality 
preconditioners
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Questions ?

vassil.alexandrov@bsc.es

http://www.bsc.es/computer-sciences/extreme-computing
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