
www.bsc.es

Towards Advanced Hybrid Monte Carlo
Methods for Linear Algebra for Extreme Scale
Systems: Latest Advances and Results

VERSAILLES 2017

Vassil Alexandrov (ICREA-BSC, ITESM)
Aneta Karaivanova (IICT)
Diego Davila (IBSC)
Anton Lebedev (UTubingen)
Oscar Esquevel(ITESM)

Overview

Introduction -

Needs and Motivation

Overview - Monte Carlo Hybrid Methods

Monte Carlo vs MSPAI

Experimental results

Conclusions

3

BSC Machines – MareNostrum3

Peak
performa
nce

1,1 PFLOPS

Processor 6.196 8-core Intel
SandyBridge EP E5-
2670/1600 20M 2.6GHz
84 Xeon Phi 5110 P

Memory 100,8 TB

Disk 2000 TB

Networks Infiniband FDR10, GbE

OS SUSE Linux ES

Infrastructure funded by:

Important Properties of Algorithms

§ Efficient Distribution of the compute
data.

§ Minimum communication/
communication reducing algorithms

§ Increased precision is achieved adding
extra computations (without restart) .

§ Fault-Tolerance achieved through
adding extra computations

Challenges

 To achieve excellent results scalability at
all levels would be required:

Mathematical models level

Algorithmic level

Systems level

Monte Carlo Methods FOR LINEAR ALGEBRA

Idea of the Monte Carlo method

Wish to estimate the quantity α

Define a random variable ξ

Where ξ has the mathematical expectation α

Take N independent realisations ξi of ξ

– Then

– And according to the Law of Large Numbers (LLN)

Motivation: MC for Linear Algebra

Many scientific and engineering problems revolve around:

– inverting a real n by n matrix (MI)

• Given B

• Find B-1

– solving a system of linear algebraic equations (SLAE)

• Given B and b

• Solve for x, Bx = b

• Or find B−1 and calculate x = B−1b

Motivation cont.

Traditional direct Methods with dense matrices

– Gaussian elimination

– Gauss-Jordan

– Both take O(n3) steps

Time prohibitive if

– large problem size

– timely solution required

Monte Carlo Methods

Fast stochastic approximation

Very efficient in finding a quick rough estimation

– element or row of inverse matrix

– component of solution vector

Reason for using Monte Carlo

O(NT) steps to find an element of the

– inverse matrix B

– solution vector x

Where

– N Number of Markov Chains

– T length of Markov Chains

Independent of n - size of matrix or problem

Algorithms can be efficiently parallelised

Parallel Algorithms

Multi-tiered process

Using parallel Monte Carlo to find a
rough inverse of B

Original algorithm for diagonally
dominant matrices

Extension to the general case non-
diagonally dominant matrices
with ||A|| < 1

Parallel iterative refinement to improve
accuracy and retrieve final inverse

Parallel Algorithm

Start with a diagonally dominant matrix ^B

Make the split ^B = D - B1

– D has only the diagonal elements of ^B

– B1 includes only off-diagonal elements

Compute A = D-1B1

If we had started with a matrix B that was not diagonally
dominant then an additional splitting would have been made
at the beginning, B = ^B - (^B - B), and a recovery section
would be needed at the end of the algorithm to get
B-1 from ^B-1

Parallel Algorithm cont.

Parallel Algorithm cont.

Parallel Algorithm cont.

Matrix Inversion using Markov Chain Monte Carlo

Refinement Process

Given a non-singular matrix , and its inverse , if we
define then we perform the following steps for
more accurate inverse computation:

Therefore,

Obviously we have,

Refinement Process

The formula shows that An approaches A when the
convergence of the process is very rapid. We can estimate
the error at step n of this procedure:

We see from the inequality that as long as the initial
approximate inversion satisfies the condition
the number of correct decimal figures increases with a power

Parallel Algorithm cont.

Having used MC for inverting diagonally dominant matrices
the obvious next extension is to see how this algorithm can be
extended to invert general matrices. For this, assume the
general case where ||B|| > 1 and consider the splitting

From this it is then necessary to work back and recover
from .

To do this an iterative process is
used on

Hybrid VS. Deterministic Methods

Combination of Monte Carlo and SPAI

SPAI – SParse Approximate Inverse Preconditioner

– Computes a sparse approximate inverse M of given matrix A by
minimizing ∥ AM − I ∥ in the Frobenius norm

– Explicitly computed and can be used as a preconditioner to an iterative
method

– Uses BICGSTAB algorithm to solve systems of linear algebraic
equations Ax = b

Sparse Monte Carlo Matrix Inverse Algorithm

– Computes an approximate inverse by using Monte Carlo methods

– Uses an iterative filter refinement to retrieve the inverse

Experiments

Selected test sets

– The University of Florida Sparse Matrix Collection

– Matrix Market

- Other applications

Parameter and setting selection

– Computation of pre-conditioner to same accuracy

– Utilized in BiCGSTAB , GMRES or other solvers

– RHS generated from input matrix

Monte Carlo approach without refinement filter

– Rough inverse sufficient for quick convergence in most cases

Sparsity and computation

SPAI computes the Frobenius norm of the input matrix

– Workload depending on the size of the input matrix

Monte Carlo algorithm uses Markov Chains

– Independent of the size of the matrix

– length and number of chains important

– Original algorithm for dense matrices; extended to support general
sparse cases

Experiments have been run using various sparsity (10%-90%)

Sparsity and computation cont.

MC vs MSPAI

Test Matrices

Execution Time Breakdown

Figure 1. Execution time breakdown in a 16 cores
execution.

Execution Time Breakdown

Figure 2. Execution time breakdown in a 256 cores
execution.

Probability calculation

Figure 6. Error calculation when using Uniform and Almost
Optimal distributions with 16 cores.

Employing Mixed MPI/OpenMP version

Mixed MPI/OpenMP

Figure 8. Scalability comparison for the two-step broadcast for a
relatively big matrix (3.5M x 3.5M)

MC vs MSPAI

Figure 9. Scalability comparison MSPAI and MC for
matrix appu

MC vs MSPAI

Figure 10. Scalability comparison MSPAI and MC for
matrix non-sym r5 a11.

MC vs MSPAI

Figure 11. Scalability comparison MSPAI and MC for matrix
rdb2048.

Preconditioner calculation

Figure 12. Fastest execution time achieved during the
preconditioner calculation.

GMRES timing

Figure 13. Time required by the solver to find the solution for the
preconditioned system.

Total time

Figure 14. Total time = Preconditioner construction time + Solver
execution time.

Low discrepancy (quasirandom) sequences

 The quasirandom sequences are deterministic sequences constructed to be
as uniformly distributed as mathematically possible (and, as a consequence, to
ensure better convergence for the integration)

 The uniformity is measured in terms of discrepancy which is defined in the
following way: For a sequence with N points in [0,1]s define

RN(J) = 1/N#{xn in J}-vol(J) for every J ⊂ [0,1]s

DN* = supE* |RN(J)|,

E* - the set of all rectangles with a vertex in zero.

 A s-dimensional sequence is called quasirandom if

 DN* ≤ c(log N)s N-1

 Koksma-Hlawka inequality (for integration):

 ε[f] ≤ V[f] DN*

 (where V[f] is the variation in the sense of Hardy-Kraus)

 The order of the error is О((log N)s N-1)
LSSC 2017, June 5-9, Sozopol

PRNs and QRNs

Some facts

Discrepancy of real random numbers:

D*N = O(N-1/2 (log log N)-1/2)

Klaus F. Roth (Fields medal 1958) proved the following lower
bound for star discrepancy of N points in s dimensions:

D*N ≥O(N-1 (log N)(s-1)/2)

Sequences (indefinite length) and point sets have different
“best” discrepancies:

n Sequence: D*N ≤ O(N-1 (log N)s-1)

n Point set: D*N ≤ O(N-1 (log N)s-2)

LSSC 2017, June 5-9, Sozopol

Most often used sequences (Halton Sequence)

Let n be an integer presented in base p. The p-ary
radical inverse function is defined as

 where p is prime and bi comes from

 with 0 bi < p

An s-dimensional Halton sequence is defined as:

with p1 p2 …., ps being relatively prime, and usually the first s
primes

Most often used sequences

In our computations we have used scrambled modified
Halton sequence [Atanassov 2003]:

xn(i) = ∑j=0m imod (aj(i)kij+1 + bj(i),pi) pi–j-1

(scramblers bj(i), modifiers ki in [0, pi – 1])

LSSC 2017, June 5-9, Sozopol

Most often used sequences (Sobol)

 Sobol sequence (1967) {xn = (xn(1), xn(2), …, xn(s))}

 The j-th coordinate of the n-th point of s-dimensional Sobol
sequence xn = (xn(1), xn(2), …, xn(s)) is generated through the
recursion:

 xn(j) = b1v1(j) ⊗ b2v2(j) ⊗… bwvw(j)

where vi(j) is i-direction number for dimension j, and ⊗ is bit-by-bit
exclusive-or operation (bi are the coefficients of representation of n in
base 2)

 How to determine vi(j) : for each dimension a different primitive
polynomial is chosen and its coefficients are used to define:

 vi(j) = a1(j)vi-1(j) ⊗ … ⊗ adj -1(j)vi-dj +1(j) ⊗vi-dj(j) ⊗ vi-dj(j)/2dj, i > dj

LSSC 2017, June 5-9, Sozopol

LSSC 2017, June 5-9, Sozopol

Quasirandom Sequences and their scrambling

Unfortunately, the coordinates of the quasirandom sequence
points in high dimensions show correlations. A possible solution
to this problem is the scrambling.

The purpose of scrambling:

– To improve 2-D projections and the quality of quasirandom
sequences in general

– To provide practical method to obtain error estimates for QMC

– To provide simple and unified way to generate quasirandom
numbers for parallel computing environments

– To provide more choices of QRN sequences with better (often
optimal) quality to be used in QMC applications

Scrambling techniques

Scrambling was first proposed by Cranley and Patterson (1979) who took
lattice points and randomized them by adding random shifts to the
sequences. Later, Owen (1998, 2002, 2003) and Tezuka (2002)
independently developed two powerful scrambling methods through
permutations

Although many other methods have been proposed, most of them are
modified or simplified Owen or Tezuka schemes (Braaten and Weller,
Atanassov, Matousek, Chi and Mascagni, Warnock, etc.)

There are two basic scrambling methods:

– Randomized shifting

– Digital permutations

(Permuting the order of points within the sequence)

The problem with Owen scrambling is its computational complexity
LSSC 2017, June 5-9, Sozopol

Scrambling

Digital permutations: Let (x(1)n, x(2)n, . . . , x(s)n) be any
quasirandom point in [0, 1)s, and (z(1)n, z(2)n, . . . , z(s)n)
is its scrambled version. Suppose each x(j)n has a b-ary
representation x(j)n, =0. x(j)n1 x(j)n2 … x(j)nK, … with K
defining the number of digits to be scrambled. Then

z(j)n = σ(x(j)n), where σ={Φ1, …, ΦK} и Φi, is a
uniformly chosen permutation of the digits {0,1,…,b-1}.

Randomized shifting has the form

zn = xn + r (mod 1),

where xn is any quasirandom number in [0, 1)s and r is a
single s-dimensional pseudorandom number.

LSSC 2017, June 5-9, Sozopol

Two-dimensional projection of Halton sequence and
scrambled Halton sequence (dimension 3)

LSSC 2017, June 5-9, Sozopol

Two-dimensional projection of Halton sequence and scrambled Halton
sequence (dimension 8)

LSSC 2017, June 5-9, Sozopol

Two-dimensional projection of Halton sequence and scrambled Halton
sequence (dimension 99)

LSSC 2017, June 5-9, Sozopol

Error estimate for QMC

Scrambling provides a practical method to obtain
error estimates for QMC based by treating each
scrambled sequence as a different and independent
random sample from a family of randomly scrambled
quasirandom numbers, thus allowing standard
(Gaussian) confidence intervals to be considered.

QMC error for Markov chain based problems:

 δN (ζ(Q’)) ≤ V(ζ ∘ Γ-1). (D*N(Q))

 where Q = {γi} is a sequence of vectors in [0,1)sT, Q’ =
{ωi} is a sequence of quasirandom walks generated
from Q using the mapping Γ.

LSSC 2017, June 5-9,
Sozopol

Footer

Footer

Footer

Footer

MC vs QMC

Figure 15. MC and QMC preconditioners execution time

MC vs QMC

Figure 16. MC and QMC preconditioners execution time

MC vs QMC

Figure 17. MC and QMC solver times

Further Improvements

Discarding elements of the matrix

Further Improvements

 Total time: preconditioner + solver

Further Improvements

Further Work

MC stochastic projection approach

GPU based implementations

Further experiments and comparisons

Conclusions

Conclusions and Future Work

MC and QMC provide good quality preconditioners

Need to enhance the reuse of sub-chains in longer Markov
Chains

quasi-Monte Carlo and MC deliver the same quality
preconditioners

www.bsc.es

Questions ?

vassil.alexandrov@bsc.es

http://www.bsc.es/computer-sciences/extreme-computing

mailto:vassil.alexandrov@bsc.es
http://www.bsc.es/computer-sciences/extreme-computing
http://www.bsc.es/computer-sciences/extreme-computing
http://www.bsc.es/computer-sciences/extreme-computing

	Diapo 1
	Overview
	BSC Machines – MareNostrum3
	Important Properties of Algorithms
	Challenges
	Monte Carlo Methods FOR LINEAR ALGEBRA
	Idea of the Monte Carlo method
	Motivation: MC for Linear Algebra
	Motivation cont.
	Monte Carlo Methods
	Reason for using Monte Carlo
	Parallel Algorithms
	Parallel Algorithm
	Parallel Algorithm cont.
	Parallel Algorithm cont.
	Parallel Algorithm cont.
	Refinement Process
	Refinement Process
	Parallel Algorithm cont.
	Hybrid VS. Deterministic Methods
	Combination of Monte Carlo and SPAI
	Experiments
	Sparsity and computation
	Sparsity and computation cont.
	MC vs MSPAI
	Test Matrices
	Execution Time Breakdown
	Execution Time Breakdown
	Probability calculation
	Employing Mixed MPI/OpenMP version
	Mixed MPI/OpenMP
	MC vs MSPAI
	MC vs MSPAI
	MC vs MSPAI
	Preconditioner calculation
	GMRES timing
	Total time
	Low discrepancy (quasirandom) sequences
	PRNs and QRNs
	Some facts
	Most often used sequences (Halton Sequence)
	Most often used sequences
	Most often used sequences (Sobol)
	Quasirandom Sequences and their scrambling
	Scrambling techniques
	Scrambling
	Diapo 47
	Diapo 48
	Diapo 49
	Error estimate for QMC
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	MC vs QMC
	MC vs QMC
	MC vs QMC
	Further Improvements
	Further Improvements
	Further Improvements
	Further Work
	Conclusions
	Conclusions and Future Work
	Diapo 64

