

Numerical Library with High-Performance/Adaptive-Precision/High-Reliability

Extension of ppOpen-HPC/ESSEX-II towards the Post Moore Era

Kengo Nakajima^{1,3)} Takeshi Ogita²⁾ Ryuichi Sakamoto¹⁾

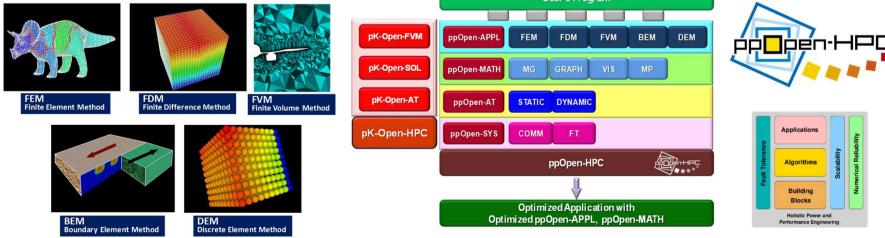
Information Technology Center, The University of Tokyo
Tokyo Woman's Christian University 3) RIKEN R-CCS

4th SPPEXA Workshop on Parallel Programing Models -Productivity & Applications for Exascale and Beyond University of Versailles, France, March 21, 2019

• Sponsors

- ✓ CREST-JST, Japan
- ✓ SPPEXA-DFG, Germany
- ✓ JHPCN, Japan
- Collaborators, Colleagues JHPCN
 - ✓ Takeshi Iwashita (Hokkaido U.)
 - ✓ Takahiro Katagiri (Nagoya U.)
 - ✓ Takashi Shimokawabe (ITC/U.Tokyo)
 - ✓ Hisashi Yashiro (RIKEN R-CCS)
 - ✓ Hiroya Matsuba (RIKEN R-CCS)
 - ✓ Hiromichi Nagao (ERI/U.Tokyo)
 - ✓ Takeshi Ogita (TWCU)
 - ✓ Ryuichi Sakamoto (ITC/U.Tokyo)
 - ✓ Toshihiro Hanawa (ITC/U.Tokyo)
 - ✓ Akihiro Ida (ITC/U.Tokyo)
 - ✓ Tetsuya Hoshino (ITC/U.Tokyo)
 - ✓ Masatoshi Kawai (RIKEN R-CCS)
 - ✓ Takashi Furumura (ERI/U.Tokyo)
 - ✓ Hajime Yamamoto (Taisei)

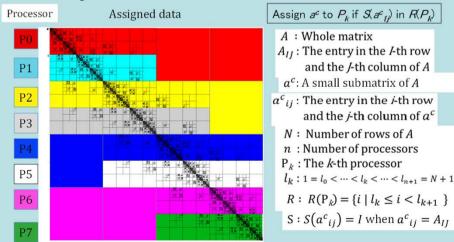
Acknowledgements²

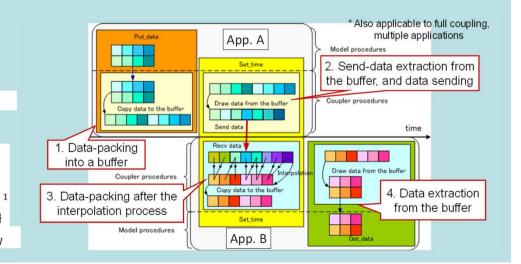


- ✓ Gerhard Wellein (Erlangen)
- ✓ Achim Basermann (DLR)
- ✓ Osni Marques (LBNL)
- ✓ Weichung Wang (NTU, Taiwan)

Post-Peta CREST \Rightarrow SPPEXA

- ppOpen-HPC (FY.2011-2015) (Leading PI)
 - Open source infrastructure for development and execution of large-scale scientific applications on post-peta-scale supercomputers with automatic tuning
 - ✓ Application Framework with AT
 - ✓ <u>https://github.com/Post-Peta-Crest/ppOpenHPC</u>
- ESSEX-II (FY.2016-2018) (Co-PI)
 - ✓ Preconditioned Iterative Solver for Eigenvalue Problems in Quantum Science




3

Featured Developments

- ppOpen-AT: AT Language for Loop Optimization
 - Focusing on Optimum Memory Access
- HACApK library for H-matrix comp. in ppOpen-APPL/BEM (OpenMP/MPI Hybrid Version)
 - First Open Source Library by OpenMP/MPI Hybrid
- ppOpen-MATH/MP (Coupler for Multiphysics Simulations, Loose Coupling of FEM & FDM)
- Sparse Linear Solvers

Computing in the Exascale/Post Moore Era

- Power Consumption is the Most Important Issue in the Post Moore Era
 - It is already important now.
 - Memory performance in the Post Moore Era is relatively better than now, but data movement should be reduced from the view point of energy consumption.
- Integration of (Simulation+Data+Learning) (A21 DOE)
- Quantum Computing, FPGA ?: "Partial" Solution
 - Could be a solution in certain applications (e.g. searching, graph, data clustering etc.)
 - Contributions to (S+<u>D+L</u>)
- How to save Energy for Sustainability ?
 - (1) Approximate Computing by Low/Adaptive Precision
 - (2) Reduction of Computations: Data Driven Approach 5

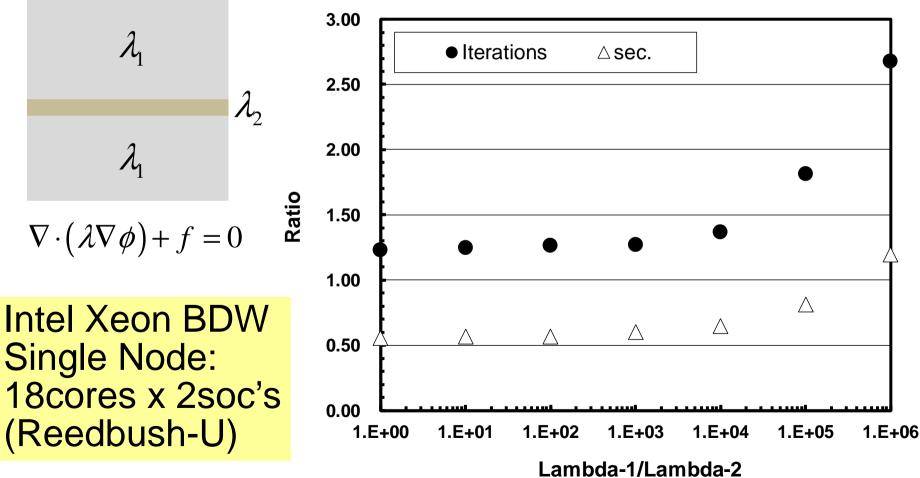
Approximate Computing with Low/Adaptive/Trans Precision

- Lower Precision: Save Time & Energy & Memory
- Approximate Computing: originally for image recognition etc.
 - Approach for Numerical Computations
 - SIAM PP18 Sessions, ICS-HPC 2018 Workshop
 - OPRECOMP: Open transPREcision COMPuting (Horizon 2020)
- Computations with Low Precision
- Mixed Precision Approach (FP16-32-64-128)
- Iterative Refinement
 - such computations may provide results with less accuracy

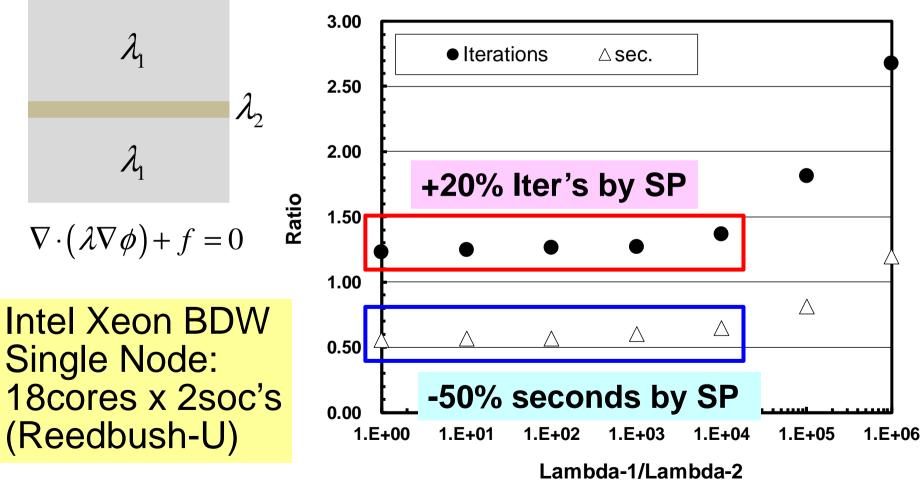
JHPCN

- https://jhpcn-kyoten.itc.u-tokyo.ac.jp/en/
- The Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures (JHPCN) is made up of 8 centers of National University's equipped with supercomputers.
 - Proposal-Based, Renewed Every Year, Computational Resources Awarded (e.g. Oakforest-PACS with KNL + Tsubame 3.0 with NVIDIA P100)
- Numerical Library with High-Performance/Adaptive-Precision/High-Reliability
 - Staring from April 2018, as a part of JHPCN Project in Japan (Preliminary Works in FY.2018)
 - 20+ Members from 13 Institutions (Japan, Germany) 參 東京女子大学
 - P.I.: Kengo Nakajima (U.Tokyo)
 - Gerhard Wellein (Erlangen), Achim Basermann (DLR)

7

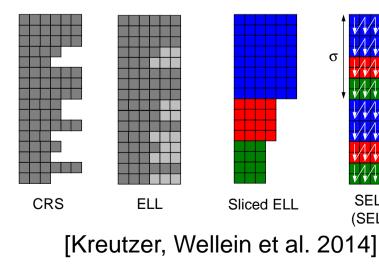

Numerical Library with High-Performance/Adaptive-Precision/High-Reliability Extension of ppOpen-HPC towards the Post Moore Era

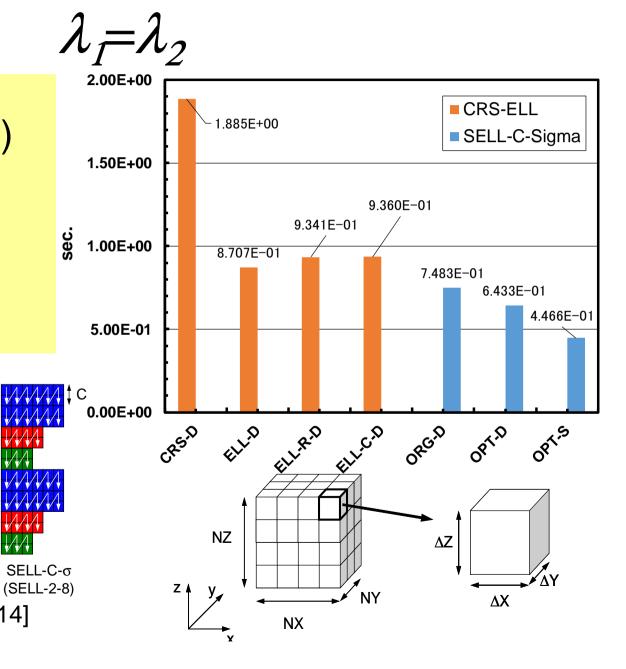
- Lower/Adaptive Precision + Accuracy Verification
 - Iterative Refinement, Mixed Precision Computation etc.
 - Verification: Collaboration with "Pure" Applied Mathematicians


8

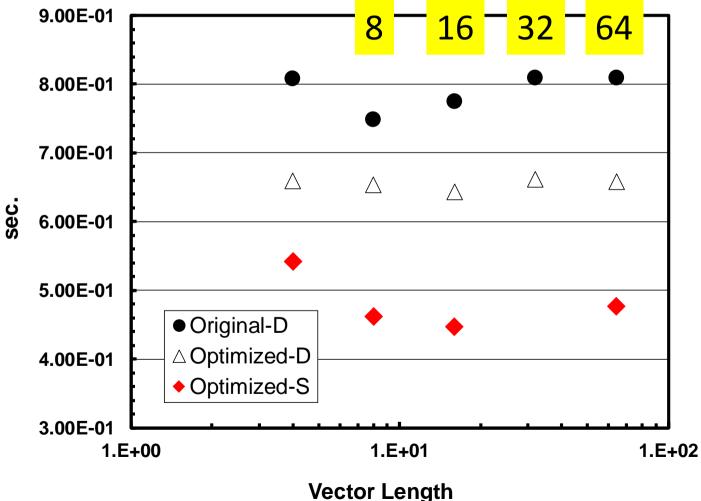
- Automatic Tuning (AT): Selection of the optimum precision, which minimizes computation time and <u>power consumption</u> under certain target accuracy – implemented to "ppOpen-HPC".
- Preconditioned Iterative Solvers for Practical Problems with III-Conditioned Matrices with Adaptive Precision – FP16-32-64-128

Results: λ_1/λ_2 ~ Condition Number Ratio of Iterations & Computation Time Single/Double: Down is Good

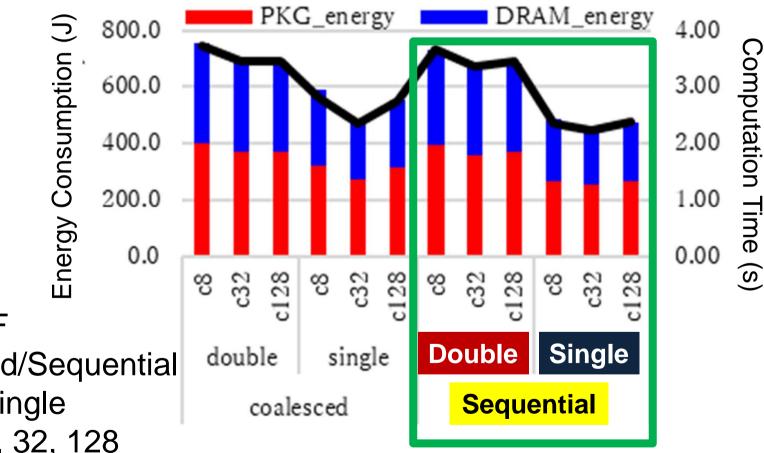

Results: λ_1/λ_2 ~ Condition Number Ratio of Iterations & Computation Time Single/Double: Down is Good



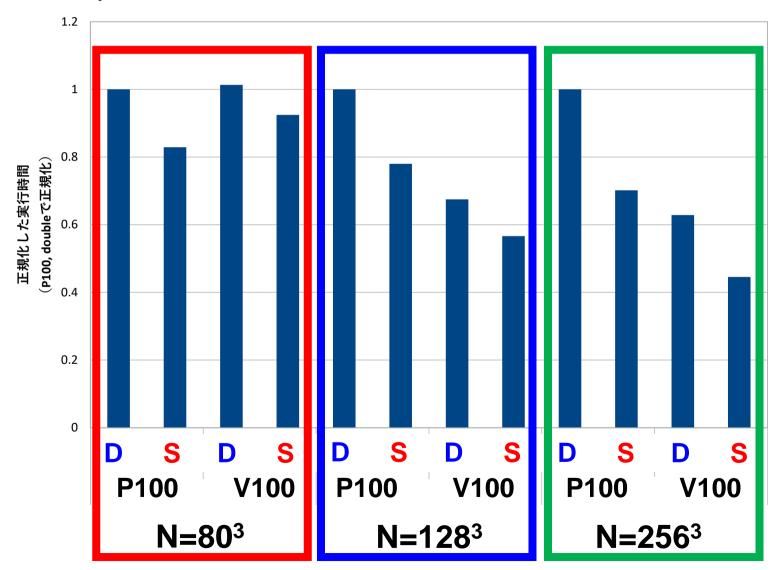
ICCG: ELL/Sliced ELL/SELL-C-σ

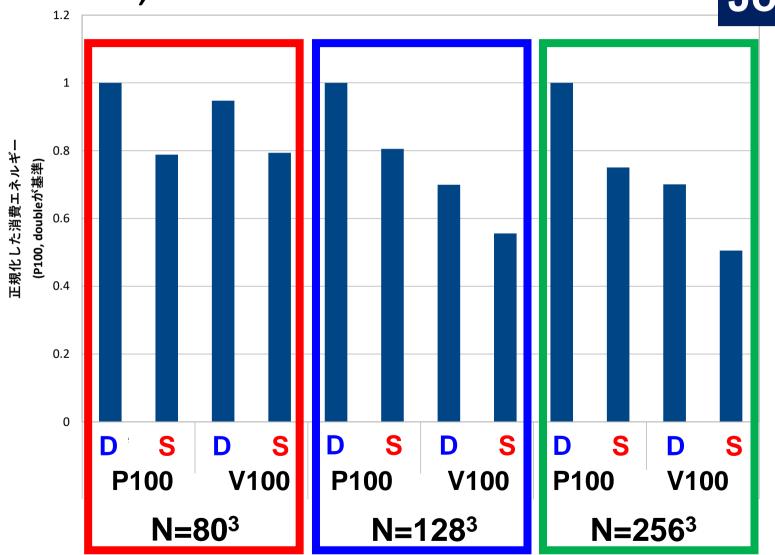

ICCG Solvers on Intel Xeon/Phi (KNL) (Oakforest-PACS) Single Node: 64/68 cores

SELL-C- σ for ICCG



Results on OFP, Poisson-3D-OMP Effect of SIMD Vector Length in SELL-C-σ 10 colors, 128³


3D Poisson Solvers on Reedbush-H $\lambda_1 = \lambda_2$ **CPU only: Intel BDW: sec. & Joule**


- 128³ DOF •
- Coalesced/Sequential •
- **Double/Single** ${\color{black}\bullet}$
- Colors: 8, 32, 128
- Watt-value of SP may increase due to larger density of comp.

[Sakamoto et al. 2018]

Computation Time (Normalized): P100, V100 [Sakamoto et al. 2018]

[Sakamoto et al. 2018] Energy Consumption (Normalized): P100, V100 Joule

Approximate Computing with Low/Trans Precision

- Accuracy verification is important
 - Iterative Refinement
- A lot of methods for accuracy verification have been developed for problems with dense matrices
 - But very few examples for sparse matrices & H-matrices
- Generally speaking, processes for accuracy verification is very expensive
 - Sophisticated Method needed
 - Automatic Selection of Optimum Precision by Technology of AT (Auto Tuning)

Special Method for Rather Well-Conditioned Matrices (M-Matrix) [Ogita, Ushiro, Oishi 2001]

Verification Algorithm

- 1. Solve a discretized linear system Ax = b.
 - $\succ \hat{x}$: a computed solution
- 2. Solve a linear system Ay = e where all elements of *e* are 1's.

 $\succ \hat{y}$: a computed solution

- 3. Verify M-property of A using \hat{y} . $(\hat{y} > 0 \Rightarrow A\hat{y} > 0)$
- 4. Compute an error bound using

$$\|x - \hat{x}\|_{\infty} \le \frac{\|\hat{y}\|_{\infty} \|b - A\hat{x}\|_{\infty}}{1 - \|e - A\hat{y}\|_{\infty}}$$

if $||e - A\hat{y}||_{\infty} < 1$. Processes for Verification are very similar to those of Solvers. We can do 2 processes in parallel manner simultaneously

Numerical Results

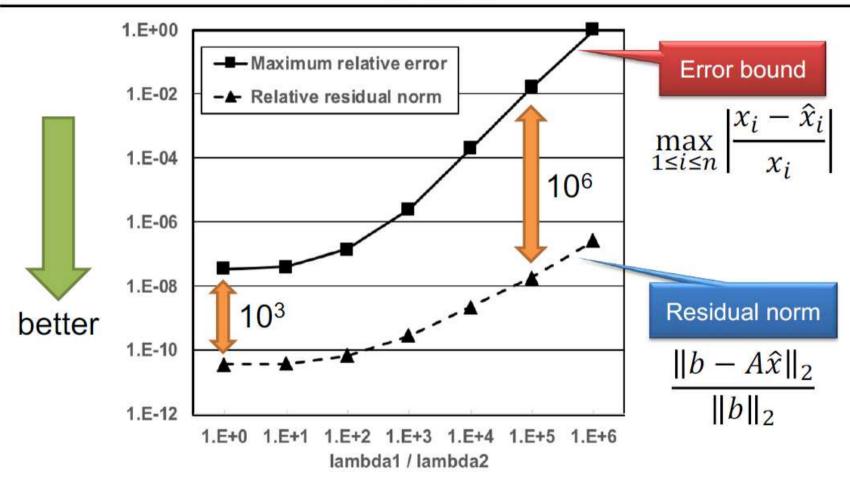
- Computer: Reedbush-U (1 node)
 - Intel Xeon E5-2695v4 (Broadwell-EP, 2.1GHz 18 cores) x 2 sockets
 - 1.21 TFLOP/s per socket, 256 GiB (153.6GB/s)
- Solver: ICCG with CM-RCM, MC(20)
- Stopping criteria:

For Ax = b, $\frac{\|b - A\hat{x}\|_2}{\|b\|_2} < 10^{-12}$ For Ay = e, $\|e - A\hat{y}\|_{\infty} < 10^{-2}$

• FP64 (double precision), OpenMP (36 threads)

Result (1): $\lambda_1 = \lambda_2 = 1.0$ NX=NY=NZ=128 (n = 2,097,152)

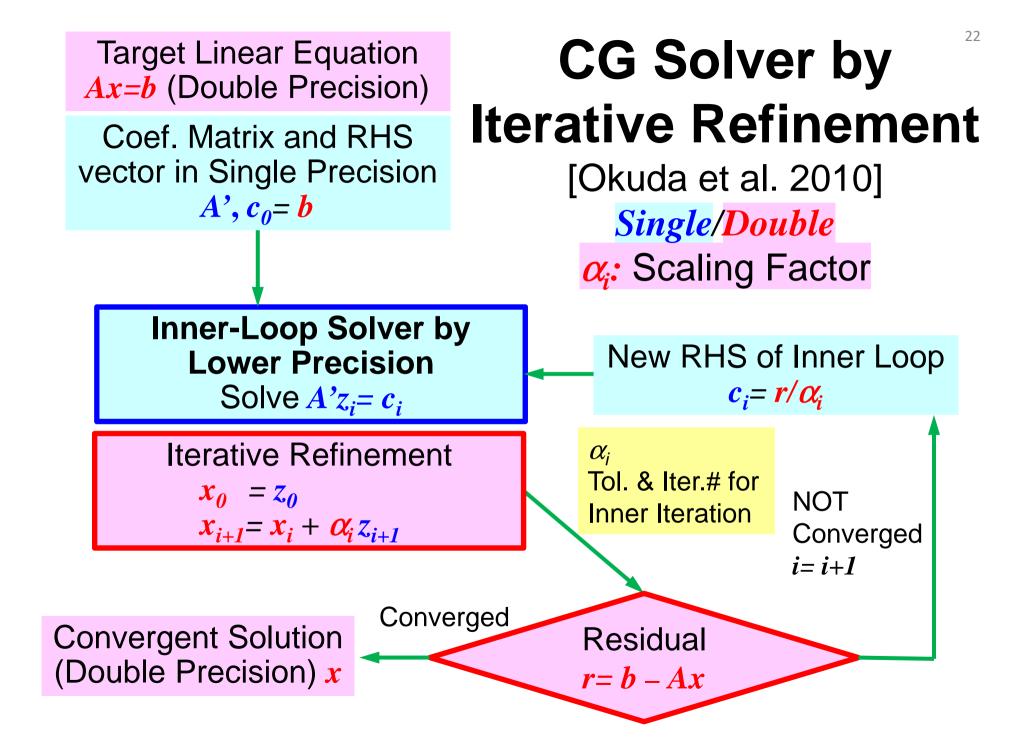
Upper bounds of maximum relative error and relative residual norm:

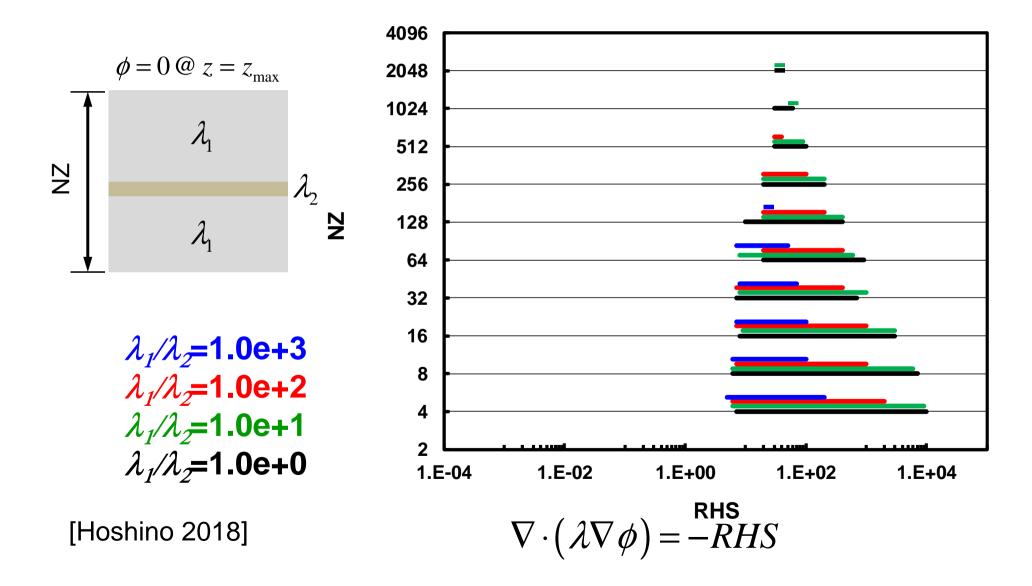

$$-\max_{1\le i\le n} \left|\frac{x_i - \hat{x}_i}{x_i}\right| \le 3.38 \times 10^{-8}$$

$$-\frac{\|b - Ax\|_2}{\|b\|_2} < 3.66 \times 10^{-11}$$

Computing time

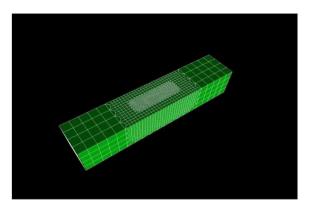
	Approximation Solve Ax=b (415 iter's)	Verification-1 Solve Ay=e (211 iter's)	Verification-2	Total
Method-1	2.38	1.18		3.56
Method-2 (2 RHS's)	2.99		1.17e-02	3.00

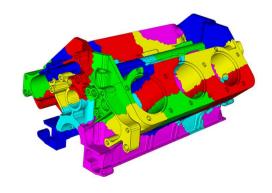

Result (2): Vary $\lambda_1/\lambda_2 \sim \text{cond between 1 and 10}^6$


It is difficult to estimate the error of a computed solution only from residual norm!

Summary

- Numerical Library in the Exascale/Post Moore Era
 - Reduction of Energy Consumption
 - Lower/Adaptive/Trans Precision
 - Reduction of Computations: Data Driven Approach (DDA): Panel
- Preliminary Studies in Computing with Lower/Adaptive Precision
 - Computations with lower-precision (FP32, single precision) work for sparse matrices with certain condition number
 - Lower Power Consumption
 - Accuracy Verification
- Other Works in FY.2018
 - H-matrix solver with lower/mixed precision
 - Iterative Refinement [Okuda 2010]
 - Pipelined Algorithms
 - FP16 (Half-Precision)
 - Severe Limitation: Only 3-digit accuracy assured
 - Preconditioner using Local Information: Block LU, GS




FP32 (Single) with FP16 Precond. V100, All Problems converge in FP32/64

(Near) Future Works in FY.2019

- Accuracy Verification + AT
 - More Reasonable Method for Accuracy Verification
 - Ill-Conditioned Sparse/H Mat.: Combined with Iterative Refinement
 - Strategy for Selection of Optimum Precision
 - Accuracy, Computation Time, Power Consumption
 - Trans-Precision (e.g. FP20, FP21)
 - Challenging Approach: e.g. AT + FPGA
- FEM with Local Adaptive Precision
 - Precision changes on each element
 - New Idea
 - Heterogenuity, Stress Concentration, Elastic-Plastic (Linear-NL), Separation
 - Load In-Balancing in Parallel Computing
 - Discussions in WCCM 2018 in NYC
- Towards "Appropriate Computing"
 - Approximate Computing + Accuracy Verification + Automatic Tuning (AT)

Current Status

- Proposal for FY. 2019 Accepted
- Osni Marques (LBNL, USA) will join in April 2019
 - Japan-Germany-USA Collaboration
 - We welcome French collaborators !
- If you are a member, you can use:
 - Oakforest-PACS (KNL) (U.Tokyo, Tsukuba)
 - Tsubame 3 (Intel/BDW + NVIDIA P100) (Tokyo Tech)
 - Oakbridge-CX (Intel/CLX Cluster) (U. Tokyo) (After October 2019)

ICPP 2019 in Kyoto

48th International Conference on Parallel Processing August 5-8, 2019

http://www.icpp-conf.org/

Submission Open:February 01, 2019Deadline for Submission (10-pages):April 15, 2019Author Notification:May 17, 2019Camera-Ready Due:June 07, 2019

Invited Speakers

Depei Qian (Sun Yat-Sen University & Beihang University, China) Satoshi Sekiguchi (AIST, Japan) Richard Vuduc (Georgia Tech, USA)

Please take your vacation in Japan this Summer