Sciences et Technologies

FERIStAL Q\\ E?]lvler31te
/ L11E

MAISON DE LA SIMULATION

A programming paradigm for extreme computational
and data science

Serge G. Petiton

serge.petiton@univ-lillel.fr

RWTHAACHEN
UNIVERSITY

Y
e
BIERE
2
MW 7 a
‘

WYX

Outline

e |ntroduction

* YML for computational science applications

TEZ and others tools for data science computation

 YML for computational and data science distributed
and parallel computing

e Conclusion

18/10/2017

SPPEXA Workshop Japan 2017

3??5331& Towards an Intelligent linear

r_ Y7 == - i
e algebra for extreme computing

Serge G. Petiton

CNRS/Maison de la Simulation and CRIStAL Laboratory,
| University Lille 1, Sciences et Technologies

iR
.....

i

-
AKIHABARA Nl
Conventisn Hall | B

{
April the 6%, 217 kw
\I| 7

SPPEXA

Outline

* Introduction

* YML for computational science applications

 TEZ and others tools for data science computation

 YML for computational and data science distributed
and parallel computing

e Conclusion

18/10/2017 SPPEXA

Toward graph of parallel tasks/components

e Communications have to be minimized : but all communications have not the
same costs, in term or energy and time.

e Latencies between farther cores will be very time consuming : global
reduction or other synchronized global operations will be really a bottleneck.

 We have to avoid large inner products, global synchronizations, and others
operations involving communications along all the cores. Large granularity
parallelism is required (cf. CA technics and Hybrid methods).

* Graph or tasks/components programming allows to limit these
communications only between the allocated cores to a given
task/components.

 Communications between these tasks and the |/O may be optimized using
efficient scheduling and orchestration strategies(asynchronous I/O and others)

e Distributed computing meet parallel computing, as the future
super(hyper)computers become very hierarchical and as the communications
become more and more important. Scheduling strategies would have to be
developed.

18/10/2017 SPPEXA

Toward graph of tasks/components
computing and other computing levels

Each task/component may be an existing method/software developed for a large part
of the cores, but not all of them (then classical or CA methods may be eficients)

The computation on each core may use multithread optimizations and runtime libraries
Accelerator programming may be optimize also at this level.
Then we have the following levels of programming and computing :
— Graph of components, already developed or new ones,
— Each component is run on a large part of the computer, on a large number of cores
— On each processor, we may program accelerators,
— On each core, we have a multithread optimisation.

In term of programming paradigms, we propose : Graph of task (Data flow
oriented)/SPMD or PGAS-like or.../Data parallelism

We have to allow the users to give expertise to the middleware, runtime system and
schedulers. Scientific end-users have to be the principal target on co-design process.
Frameworks and languages have to consider them first.

18/10/2017 SPPEXA

Outline

* Introduction

 YML for computational science applications

 TEZ and others tools for data science computation

 YML for computational and data science distributed
and parallel computing

e Conclusion

18/10/2017 SPPEXA

Some elements on YML

YML' Framework is dedicated to develop and run parallel and distributed L
applications on Cluster, clusters of clusters, and supercomputers

(schedulers and middleware would have to be optimized for more integrated
computer — cf. “K” and OmnRPC for example).

Independent from systems and middlewares
— The end users can reused their code using another middleware
— Actually the main system is OmniRPC?

Components approach
— Defined in XML

— Three t¥3pes . Abstract, Implementation (in FORTRAN, C or C++;XMP,..),
Graph (Parallelism)

— Reuse and Optimized

The parallelism is expressed through a graph description Ian%uage, named
Yvette (name of the river in Gif-sur-Yvette where the ASCI lab was). LL(1)
grammar, easy to parse.

Deployed in France Belgium, Ireland, Japan (T2K, K), China, Tunisia, USA
(LBNL, TOTAL—Houstong.

SPPEXA

Graph description language: Yvette

 Language keywords
— Parallel sections: par section1 // ... // section N endpar
— Sequential Loops: seq (i:=begin;end)do ... enddo
— Parallel Loops: par (i:=begin;end)do ... enddo
— Conditionnal structure: if (condition) then ... else ... endif
— Synchronization: wait(event) / notify(event)
— Component call: compute NameOfComponent(args,..,..)

4 types de components :
— Abstracts
— Graphs

— Implementations From a Taxonomy we are developing :
— Executions

Granular | Comuni component | Runtime Graph Multi-back
ity cations scheduler dynamic | ends

DAG Large implicit yes yes YML engine No yet Yes

General up to 3 OmniRPC+
already XtermWeb

SPPEXA

Graph (n dimensions)
of components/tasksYML

Generic component noc visualize mesh(...)

Begin node end par

@
@)
® Endnode
O Graph node

18/10/2017 Dependence sprexa

Abstract Component

<?xml version="1.0" ?>

<component type="abstract" name="prodMat" description=“Matrix
Matrix Product" >

<params>
<param name="matrixBkk" type="Matrix" mode="in" />
<param name="matrixAki« type="Matrix" mode="inout" />
<param name="blocksize" type="integer" mode="in" />
</params>

</component>

Future :

<param name= "conv" type=" graph_param_float" mode= "inout" />

Implementation Component

<?xml version="1.0"?>
<component type="impl" name="prodMat" abstract="prodMat" description="Implementation
component of a Matrix Product">
<impl lang="CXX">
<header />
<source>
<|[CDATA]
inti,jk;
double ** tempMat;
//Allocation
for(k = 0 ; k< blocksize ; k++)
for (i = 0 ;i <blocksize ; i++)
for (j = 0 ;j <blocksize ; j++)
tempMat[i][j] = tempMat[i][j] + matrixBkk.data[i][k] * matrixAki.data[k][j];

for (i = 0 ;i < blocksize ; i++)
for (j = 0;j < blocksize ; j++)
matrixAki.datali][j] = tempMat[i][j];
//Desallocation
11>
</source>
<footer />
</impl>
</component>

Graph component of Block Gauss-Jordan Method

<?xml version="1.0"2>

<application name="Gauss-Jordan">

<description>produit matriciel pour deux matrice carree
</description>

<graph>

blocksize:=4;

blockcount:=4;

par (k:=0;blockcount - 1)
do
#inversion
if (k neq 0) then
wailt (prodDiffA (k] [k] [k - 11):
endif
compute inversion{A[k][k],B[k][k],blocksize,blocksize);
notify(bInversed[k][k]):

#step 1

par (i:=k + 1; blockcount - 1)

do
walt (bInversed (k] [k]):
compute prodMat(B[k] [k],A[k][1],blocksize);
notify(prodafk][i]):

enddo

par{i:=0;blockcount - 1)
do
#step 2.1
if(i neq k) then
walt (bInversed[k] [k]);

compute mProdMat (A[1][k],B[k][k],B[1][k],blocksize):

notify (mProdB (k] [1] [k]):
endif
#step 2.2
if(k gt 1) then
walt (bInversed[k] [k]);
compute prodMat(B[k] [k],B[k][1],blocksize);
notify(prodBk](i]):
endif
enddo

#Step3
par(i:= 0:blockcount - 1)
do
if (i neq k) then
if (k neq blockcount - 1) then
#step 3.1
par (j:=k + l:blockcount - 1)
do
wait (prodA[k] [j]1):
compute
prodDiff (A[i] [k],A[k][]j],A[1]([]],blocksize);
notify (prodDiffA[i] [j] [k]):
enddo
endif
#step 3.2
if (k neq 0) then
par(j:=0:;k - 1)
do
wait (prodB[k] [j]):
compute
prodDiff (A[i] [k],B[k][j],B[i][]] ,blocksize):
enddo
endif
endif
enddo
enddo
</graph>
</application>

YML Architecture

€ mm e Workflow
Development '
Compiler
Catalog y
Component
Generator
A 4
Just-in-time Data Repository Server
Scheduler (DRS)
AR
B Backend |
Execution BinoTr ~ :
Catal = U Middleware client
atalog Generator |

YML Worker j

SPPEXA Architecture of the 1.0.5 Version

Multi-Level Parallelism Integration:
YML-XMP

N dimension graphs available

<TASK 1>

NODE NODE NODE

NODE NODE

for(i=0;i<n;i++){
for(j=0;j<n;j++){
tmpl[i][j]=0.0;
#pragma xmp loop (k) on t(k)
for(k=0;k<n;k++){

<TASK 2> <TASK 3> <TASK 4>

<TASK 5> <TASK 6>

<TASK 7> tmpli] [jl+=(m1[i][K]*m2[K][j]);
ik
YML provides a workflow programming #pragma xmp reduction (+:tmp)
environment and high level graph description
language called YvetteML Each task is a parallel program over several nodes.

XMP language can be used to descript parallel program easily!

YML/XMP/StarPu expriments on T2K in Japan, project FP3C

18/10/2017 SPPEXA

XcalableMP (XMP), as example of
PGAS language

parallel programming

Directive-based language extension for scalable and performance-aware

It will provide a base parallel programming model and a compiler

infrastructure to extend the base languages by directives.

#pragma xmp nodes p(4)

#pragma xmp template t(0:7)

#pragma xmp distribute t(block) onto p
int a[8];

#pragma xmp align ali] with t(i)

int main(){
#pragma xmp loop on t(i)
for(i=0;i<8;i++)

~F21 . ;.
afid= i;

Source (C+XMP) to source (C+MPI) compiler
Data mapping & Work mapping using template

al LL T T T T T T]
nodeO ED:EEEED

nodel EED:ED:D
node2 [T [TT0 T]
node3 EED:ED:D

Implementation Component Extension

 Topology and number of processors are declared to be used at compile and run-time.
e Data distribution and mapping are declared

 Automatic generation for distributed language (XMP, CAF, ...)

 Used at run-time to distribute data over processes

<?xml version="1.0"?>
<component type="impl" name="Ex" abstract="Ex" description="Example">
<impl lang="XMP" nodes="CPU:(5,5)" libs="" >
<distribute>
<param template=" block,block " name="A(100,100) " align="[i][j]:(j,i) " />
<param template=" block " name="Y(100);X(100)" align="i]:(i,*) "/>
</distribute>
<header />
<source>
<![CDATA]|
/* Computation Code */
11>
</source>
<footer />
</impl>
</component>

18/10/2017 SPPEXA

Scheduling

Language for graph of task programming exists, but performance often
depend of the associated middleware and scheduler : independent for the

moment of the supercomputers

Scheduling, runtime systems and middleware-OS are crucial to propose
efficient programming based on graph of tasks.

The duration of each task has to be larger that the time to schedule the
following tasks (smart scheduling would take more time...)

The duration of each time has to be enough large to recover anticipated
data migrations and other data movements

We need the graph of control and the graph of data to propose efficient
communications optimisations and task allocations.

We really exploit technics coming from distributed computing (on large
cluster of parallel resources) adapted on supercomputers where
throughputs and hierarchy are different.

Fault tolerance, resilience may be managed by the scheduler (Miwako’s
talk March 12™, Houston)

18/10/2017 SPPEXA

v

A

AB=BA=1
Block Gauss-Jordan
Matrix size =N =pn

18/10/2017

P

SPPEXA

I 0
0 0
0 I
0 0

To invert a matrix
2N3 operations

Challenge :

N = 10°

2@ || @
\\\\- .
I~
=
> I~
Hele:
v v |
S >
&) i\ :
|
: A
- ‘® . o :

(1) Element Gauss-Jordan, LAPACK, cx =2n3 +O(n?2)
(2) A=+/-AB;BLAS3,cx=2n*-n> @ A=B
@ A=A-BC;BLAS3, cx=2n?

—

—+ n?64 bit floating point numbers

[

B NE ga N
| ESCnuOnmomdo.
— —

I
v

|
;
|. ./

\\ >

~iireie
v

‘® |l 'C

Each computing task : 1 up to 3 blocks
maximum n < (memory size of one pair) / 3
Up to (p-1)? peers

Q)

—

"\

=
< \
N

>

V.

—

«Computation of « new » blocks on peer which minimize communications
*« update » of block at step k, on peer who updated the block a step k-1
 data send to dedicate peer ASAP

18/10/2017 SPPEXA

Block-based Gauss-Jordan method

Input: A (partitioned into p x p blocks)

Output: B= A1
For k=0top—1
Bir = A ik
Fori=k+1ltop—1(1)
Aki = Brr X Ak

End For
Fori=0top—1(2)
If (i # k)
Bir = —Air X Bk
End If

If (i < k)
Bri = Bgk X B
End If
End For
FOI‘ 7= O to P — 1 (3)
If (i £ k)
For j=k+1top—1
-41'_] = .47._7’ — _'-11',1\- X :‘k_)
End For
For] = Otok—1
B-ij = Bz‘j — A X Bk_,
End For
End If
End For
End For

s{

p=5atthe stepk=2

n >
21 |31 |3.1
3.1
3.1 3.1
2.1
31(31 |31
3.1 3.1
1 1
0 |1 1
310 3.1
21 |31 |3.1
3.1 3.1 3.1
21 | 3.1 |31
31 341 3.4
Matrix A

18/10/2017

32 |32 | 54

32| 32

32 132 [54

32| 32

22 |22 |9

22 | 22| 21

32| 324 22
3.2

3.2 2.1

32| 3.2

32 [32

32| 32|21
Matrix B

Bl \Vite

B Read

SPPEXA

~

[~

\\
W Dp-1
) > D> A=AB, BLAS3

OO \O
(p-1)?
A=AB-C, BLAS3

|

>

n? double floating points = 8n? bytes
One step of the Block Gauss-Jordan method ; p=4

18/10/2017 SPPEXA

3
Out

3
2
23

@.

Nevertheless, we can have in parallel computing from several

steps of the method.

We have to use an inter and intra steps dependency graph (3D

for Block Gauss-Jordan).

18/10/2017

3
2
L@

-9

SPPEXA

FP2C : YML-XMP
on the K computer at AICS

Processes management. OmniRPC Extension, on MPI

mpirun -n 1 -hostfile host.txt ymi_scheduler

ymi_
scheduler

node-01
node-02
node-03

(reserved nodes)

node-01 node-02 node-03 ...
18/10/2017 SPPEXA

Experiments (2) BGJ on K-Computer ﬁs’

6000

5000

4000

3000

2000

1000

--1X1 2X2 ==4X4 -e-8X8 -+-16X16

64 128 256 512 1024 2048 4096 8192

of processors for each task
Slide written by Miwako TSUJI, RIKEN/AICS

—M—I

On Poincarré, MDLS cluster

Others tests on K, Romeo Jerome’Gurhgn
Figure 3: 128 procs/task Master’s thesis at MDLS

X «<— BG, XMP, 1 bloc,

300
N —o—BGJ LS (n/2)
— —=— LU LS (n®/3)
L 200 B 3
£ —e— BG_LS (n°/3)
"~ —— XMP

100

2x2 4x4 8x8 16x16
#blocks SE ' oo

18/10/2017 SPPEXA

Outline

* Introduction

* YML for computational science applications

 TEZ and others tools for data science computation

 YML for computational and data science distributed
and parallel computing

e Conclusion

18/10/2017 SPPEXA

Structure of an application using Hadoop + Tez

Application = one client + one master + many slaves

» Client submits masters ; client is executed outside the cluster
and may be stopped after application submission
» Master is the execution Engine (Tez) ; it handles DAG of
tasks. Usually executed in a Container in Cluster.
» Slaves = containers.
» Tasks defined into the DAG are data parallel. Usually:
» One container contains one instance of a given task (SPMD).
» There is one instance per data chunk

» An instance may use many core (but multicore is most of the
time useless)

» Client defines DAG in a Java-based language
» Each task is based on a |/P/O model :
» |1/O : possibility to define data movement between vertex
» Processor is a program using Datalnput and DataOutput types.

18/10/2017 SPPEXA

DAG Tez

18/10/2017

DAG dag = new DAG();

Vertex map1 = new Vertex(MapProcessor.class);
Vertex map2 = new Vertex(MapProcessor.class);
Vertex reduce1 = new Vertex(ReduceProcessor.class);
Vertex reduce2 = new Vertex(ReduceProcessor.class);
Vertex join1 = new Vertex(JoinProcessor.class);

Edge edge1 = Edge(map1, reduce1, SCATTER_GATHER,
PERSISTED, SEQUENTIAL, MOutput.class, RInput.class);

Edge edge2 = Edge(map2, reduce2, SCATTER_GATHER,
PERSISTED, SEQUENTIAL, MOutput.class, Rinput.class);

Edge edge3 = Edge(reduce1, join1, SCATTER_GATHER,
PERSISTED, SEQUENTIAL, MOutput.class, Rinput.class);

Edge edged = Edge(reduce2, join1, SCATTER_GATHER,
PERSISTED, SEQUENTIAL, MOutput.class, Rinput.class);

dag.addVertex(map1).addVertex(map2)
.addVertex(reduce1).addVertex(reduce2)
.addVertex(join1)
.addEdge(edge1).addEdge(edge2)
.addEdge(edge3).addEdge(edged);

SPPEXA

Hadoop runtime: YARN

Resource management: separating global resource management
and application inner management.
» A unique Resource Manager
» Handles client requests and fair resource allocation to users

> Allocates (Docker-like) Containers
» Do not consider it as a front-end on a cluster |

» For each application, an Application Master (AM) or
Execution Engine (EE) is running:
» Manages tasks (monitor, scheduling)
» Asks RM resources and receive it as Containers
» Running in a Container itself
» For each node, a NodeManager handles containers and
interacts with RM for monitoring.
Master/Slave between RM/NM and AM/Containers,

haartheat_haced ~rammiinicatinnc
18/10/2017 SPPEXA

YARN Overview

MapReduce Status ———»
Job Submission ------ -

Node Status — —-— >
Resource Request ----...--..

SPPEXA

Outline

* Introduction

* YML for computational science applications

* Data migration optimization using YML

TEZ and others tools for data science computation

YML for computational and data science distributed
and parallel computing

e Conclusion

18/10/2017 SPPEXA

Collaboration with Laurent Bobelin

Main ideas

» Use YML as the upper level language. Enhancing it:

» By letting abstract component definition use a new parameter
type corresponding to big data : data

» By defining a new type of impl component (hadoop) that
allows YML to handle "native” Hadoop component (that will
be compiled and defined using Hadoop standard dev tools)

» At the component implementation level :

» Add a way to pass data from big data world (hadoop type
component) to YML component : add a way to output data
from java into data handled by YML (by giving to any java
task a local access to the memory handled by YML)

» (As data output of YML will not be big (i.e. big as in big
data) there is not need to add the other way support)

18/10/2017 SPPEXA

Main ideas - cont'd

» At the application setup, there is no, by doing so, major
changes in actual way of doing things:

» Hadoop-based programs are developed as any normal Tez
Processor task.

» Compilation of YML is unchanged.
» At application start up:

» A java client will submit an application that starts Tez that
will be used as Execution Engine

» Once Tez starts, it asks for a specified amount of Containers.

» Once containers are started, Tez start YML scheduler based on
omnirpc-mpi

18/10/2017 SPPEXA

End user

Pig

Hive

tools MapReduce
MapReduce Jobs
\
Execution
Engines

18/10/2017

SPPEXA

An example from YML point of view: Abstract components

Make a mean on some big data values and add it to some other

value

“data” type

<?xml version="1.0"7>
<yml-query login="XXX" password="XXX">
<component type="abstract" name="bigm
description="This component gives-mean of some big data">
<param type="real" mo out" name="res" />
<param type="data"4mode="in" name="a" />
</component>
</yml-query>

<yml-query login="XXX" password="XXX">
<component type="abstract" name="add"
description="This component add two numbers">
<param type="real" mode="out" name="res" />
<param type="real" mode="in" name="a" />
<param type="real" mode="in" name="b" />
</component>
</yml-query>

18/10/2017 SPPEXA

An example from YML point of view: Impl components

<?xml version="1.0"7> Hadoop
<yml-query login="XXX" password="XXX">
<component type="hadoop"“flame=bigmean_impl"

description="An mplementation component for bigmean" abstract="bigmean"
class="org.foo.bar.bigmeanImpl">
</component>

</yml-query>

<?7xml version="1.0"7>
<yml-query login="XXX" password="XXX">
<component type="impl" name="add_impl"
description="An implementation component for sum" abstract="add">
<globals><! [CDATA[
#include <stdlib.h>
11>
</globals>
<source lang="CXX" libs="">
res = a + b;
</source>
</component>
</yml-query>

18/10/2017 SPPEXA

Outline

* Introduction

* YML for computational science applications

 TEZ and others tools for data science computation

 YML for computational and data science distributed
and parallel computing

* Conclusion

18/10/2017 SPPEXA

Conclusion

Graph of components and containers programming is a potential
solution for extreme computational and data science computing

Multi-level programming, including PGAS developed software,
would be a solution for exascale computing

YML-XMP, YML-XACC, YML-TEZ and others solutions “proof” the
Interest of this programming paradigm, experimenting on several

Example. SPPEXA/MYX project contributes to validate this
programming programming

HPC + ”Data Science”” + exascale + new programming paradigm >>>

Intelligent Machine Learning (project with John Wu, LBNL)

18/10/2017 SPPEXA

