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We Live in Interesting

Times

Development of large-scale applications is
challenging. It is becoming much more so.
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Increasing complexity of computer hardware
Q Diversity in large-scale platforms
Growing diversity of applications and users

Q Traditional scientific computations, Al,
combination, workflows

Increasing need for dynamic program adaptation

Q To handle changes in computation or
resources

Changing expectations on part of application
developers

3 Python, TensorFlow, PyTorch, ...

Scalable performance, performance portability,
productivity; power saving
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Name

System peak
(PF)

Peak Power 4.8

(MW)

Total system 768 TB

memory

Node 0.204

performance

(TF)

Node Processors 64-bit
PowerPC
A2

System Size 49,152

(nodes)

System 5D Torus

Interconnect

File System 26 PB

300 GB/s
GPFS

Evolution of DOF Leadershin Class Svstems

Cori Theta

Haswell: 2.81 11.69
KNL: 29.5

4.2 1.7

Haswell: 1475 TB:
298.5 TB DDR4 843 DDR4 +
KNL: 1.06 PB 70 MCDRAM
DDR4 + + 562 SSD
High Bandwidth

Memory

Haswell: 1.178 2.66
KNL: 3.046

Intel Haswell Intel KNL
Intel KNL

Haswell; 2,388 4,392 nodes
nodes
KNL: 9,688 nodes

Aries Aries

28 PB 10 PB
>700 GB/s 744 GB/s
Lustre Lustre

Accelerated node
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Faster,
L S larger
More cores, less data networks
: sharmg o . : ,
 QOutsideof (..., ... 2022, - —....-_tures expected to evolve into “extreme” versions of today’s

systems
» 3D stacked processors, less cache, more on-die memory, more specialization, optical interconnects
* We need programming languages that meet tomorrow’s needs as well as today’s application goals

* Address needs of systems with diverse, extremely complex memory hierarchies
» Able to handle more (and more kinds of) devices and high core counts
» Facilitate interoperability, especially with internode approaches
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IESP Programming Models

International Exascale Software Project, 2010-11

Proposed timeline

cale programmingA
model(s) adopted

Exascale programming
models implemented

Standard programming model
for
heterogeneous nodes

>

Fault-tolerant MPI Candidate exascale E

programming models =

defined D

Interoperability ;’

among existing System-wide high-level A
programming models programming model

<

2010 20112012 2013 2014 2015 2016 2017 2018 2019
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A Layered Programming Approach

Computational Climate

Applications Chemistry Research Astrophysics
gfe\i/;/]flgnds DSLs, other means for application scientists to provide information
A
- Adapted versions of today’s portable parallel programming APls
Familiar (MPI, OpenMP, PGAS, Charm++)
AR
Custom Maybe some non-portable low-level APIs (threads, CUDA, Verilog)
\ 4 \ 4 \ 4
Very low- y
level achine code, device-level interoperability stds, powerful runtime
Heterogeneous :._,. : I
Hardware —lak : .‘VT EEEmrEEEE
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2 Power9s, 6 GPUs per node

>

[

27,648 NVIDIA Tesla V100s, each
with: ||

* 5120 CUDA cores E
« 640 Tensor cores =
. 300 GB/s BW (NVLink 2.0) . —
« 20MB registers, 16MB cache, | Iyrl;e S'ZE. | Ra:fe | 1 j— e 4
16GB HBM2 @900 GB/s 2 fooits 107 2 ~49x19
single 32 bits  10*38 2% ~6.0x10"8

« 7.5 DP TFLOPS; 15 SP TFLOPS, e

64 bits  10%308  2-53 _ {1 % 10-16
120 FP16 TFLOPS

quadruple | 128 bits 10+4%2 2113 x 96 x 10~

Tensor cores do mixed precision
multiply add of 4x4 matrices

}Er« % The Modeling & Simulation community can benefit from

L1 utilizing mixed / reduced precision
PG or 2 « Eg: Possible to achieve 4x FP64 peak for 64bit LU on

FP16 or FP32

V100 with iterative mixed precision (Dongarra et al.)
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Nodes in a cluster

Processor

0

Processor
o000
M

i o000

SMP Multicore Architecture

Procegsor

& Bus or Switch Nef

work

Network for Data Exchange
| Programmed using OpenMP

Programmed using MP
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global_s...

TensorFlow

programming

Programming: HPC vs. DL
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Portable parallel programming
since 1997

» Compiler directives

- Data, task, SIMD
parallelism

« Multicores, GPUs

* User specifies the strategy,

not the details

Maintained by industry
consortium

* It is now easy for
academics to join

OpenVIP

% BROOKHFEVEN

m NATIONAL LABORATORY

/\ ®
_ 2 Acron @/
IL\Z LosAlames 'R

< - RWTHAACHEN '11

NVIDIA.
\ C | ‘
QF Sose vace Hip p
T The University of Manchester

The mission of the OpenMP ARB
(Architecture Review Board) is to
standardize directive-based multi-language
high-level parallelism that is performant,
productive and portable.

OoMP
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OpenMP 4.5 - Accelerator Model

e OpenMP 4+ supports heterogeneous systems
(accelerators/devices)

. Accelerator model

— Host device and attached
— One or more ta device$

Multiple devices attached

Single device attached

Host Device Xeon Phi(s) —
(CPU Multicore) (Accelerator and self-hosted)
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ase study: BerkeleyGW mini-application named GPP

* BerkeleyGW is a
C++ application
which computes
the excited state
properties of

The OpenMP implementation with XL compiler achieves
approximately the same run time as a tuned CUDA
implementation

Clang-CORAL: OpenMP}

. PGI: OpenACC| :
materials P :

* GPP contains the XL: OpenMP|
self-energy ;
computation: :

large matrix
reductions over

complex arrays NVCC: CUDA|
in a single loop . 00 02 04 06 08 10
nest of 4 loops  Lower is better Time (seconds)

Results from: Rahulkumar Gayatri, "A Case Study for
Performance Portability Using OpenMP 4.5", WACCPD-18 ChriS Daley N ERSC
’

‘ E; ) [
Iﬂ‘ S INSTITUTE FOR ADVANCED

COMPUTATIONAL SCIENCE



Emerging OpenMP Features OpenMP

A New features in OpenMP 5.0
d Memory model: deal with memory heterogeneity

#pragma omp allocate(A) allocator(omp_high_bw_mem_alloc)
A “concurrent” directive: descriptive parallel method

#pragma omp for order(concurrent) for (inti=0;i<N;i++){...}

A Also support for unified memory, deep copy of data, metadirectives, task
affinity, and more

d Significant implementation effort to support these well
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Extreme Heterogeneity: Memory

Management
Expect significantly more complex T e Cher] D]
memory systems in the future — 2 —

NVRAM i |

Programming environment innovations are requmreu
to cope with such complexity

* Programming model
— Provide high level data abstractions
— Improve memory systems’ programmability
— Integrate performance modeling
« Compiler and runtime .

— Unified memory optimizations (prefetching, ofierations
pinning) to avoid thrashing

— Coarse grained data optimization

— Better usage of hardware capabilities e.g. avoid
caching of non-temporal accesses

Data objects

in: V; out: O

tom
pute in:V
factor

3 iterations

in: V,E; out: F

in: O,F; out: V

eSF IRCS smmmrmes



OpenMP Loop Feature

Work-sharing directive: split

loop iterations among threads fpragma omp for order (concurrent

Significant challenges: large for (i = 1; i < N; i++) {
reduction basic blocks, irregular
accesses (e.g. a[b[i]]), deeply
nested conditionals, deep
copy / allocation at target
(where is my data?)

' @@@
Strategies vary per architectuke

i=[N/4+1..N/2] i=[3N/4+1.

i=[1..N/4] i=[N/241..3N/4]

void f(double A[N+1], int i) {
if (A[i] > 0.5)

@° A[i] += i;

}

Where is A?

Where should

i ?

e SF it be?
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Model-driven, Composable and Multi-
Target Compiler Optimizations

Motivation: reduce Impact: substantial

performance gap performance
between general improvements,
purpose and domain reduced application
specific compiler tuning time
frameworks

Dense linear
algebra

Stencils

Classify

Lower-

dimensional
Intel Skylake

E * Number of intra-statement
s dependences
Features ¢ Number of inter-statement
dependences
* Number of SCC
* Number of scheduling dimensions

Dense linear
algebra

Stencils Intel KNL

Martin Kong: To appear in ACM Programming Language gpower
Design and Implementation, PLDI’19

IBM Power9
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Kernel Fusion/Decomposition for Automatic GPU-
offloading

Motivation: automatic

GPU-offloading High Level Flow

capabilities in LLVM to e i S
maXimize application Kernel Analysis 3 Kernel Transformation

. Kernel Identification [
performance and user ( 1 i ¢ Soures oo

Affinity Check

I

productivity

)
( Code Generation )
)

[ Code Insertion
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Impact: immediate
benefit for medium to
large scale ;
mathematical libraries ' [ e oo
(e.g. Grid++ Lattice —
QCD parallel library)

Cost Model

&
°
—)( LLVM IR )
|t_,( Data J[ Initiali
Transfor Cost Cos
8| &
P

stllon ] Compute Cost
! e > >
{ Total Cont

In the backend we use LLVM/Clang tools. Analysis Pass identifies all possible kernels in the code and suggests several variants for
offloading. Cost Model statically compares the potential performance amongst the various kernels generated. Kernel Transformation
adds pertinent OpenMP code to the kernel to support offloading,
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Third Place, ACM Student Research Competition at the International
Conference of Code Generation and Optimization (CGO’19, Washingtor
DC)

Alok-Mishra,-Martin-Kong,-Barbara-Chapman
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Cost models

Model-Driven | |

o]
Cache model

Computational

Translation

resource cost M mmlV1achine cost
D =« Cache cost
-
gVlem_ref cos
Dependency
latency cost
Register spill

W 2+1
Operation m DP FLOPs
3+1
I$ Fetch 33 441 067 2.0
Register Access (3W) 1055 s 0.2 06
Access 3 DS 100g 32 2 6
Access 3 L2 D$ 460= 29 27
Access 3 off chip 762= ?+; 15 45
Access 3 from DRAM 6000 3+4 120 360
HT3 BW vs Threads é*g
0 9000 ; 110 mc?o;iw 2975 S 6:1
2@ 4500 ‘ 1+6
s LR _4:4
CQ 1+2+2+2+3+4+1+2+3+3+3+2+8+1+3+2+5+B+1+8+3+b+2+@+3+6+5+8+6 2*;
Inc%@géﬁ@g%ﬁéaﬁﬁgtion (# of remote + # of local threads) 2+6

B 445



Design: determine best target
achine given inherent application
traits (memory or compute driven,
accuracy?)

dCompiler/runtime support for
stringent power caps

dResiliency and fault tolerance:
when and what to checkpoint?
QCompiler options and runtime
features embody a large and
complex optimization space
dimpact on application performandge
dDifferent application classes
require different optimization
strategies

-~

Application
Design

Resiliency /
Fault Tolerance
HW + SW
Selection

-

&

Y

Exploiting ML in Software Stack
\

=

ML Models

Compilers

Programming
Models
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I DAC or Al

* DAC community is demanding
increased computational
intensity, hence facing barriers
to scalability along with new
requirements for
interoperability, robustness,
and reliability of results

* Physics-Informed ML

Changing Workloads
Data Analytic Computing (DAC) and Modeling and Simulation

\ 4

(M&S)

M&S

+ M&S community is demanding
a more dynamic interaction
between analysis and
simulations by increasing use
of large-scale data analytics

DAC and M&S have traditionally
relied on different hardware and
software stacks moving to a
coherent platform for M&S and
DAC benefits both while
maximizing returns on R&D
investments

\ 4

Challenge: Software layers of
the HPC environment

* A more agile and reusable
HPC software portfolio that is
equally capable in DAC and
M&S will improve productivity,
increase reliability and
trustworthiness, and increase
sustainability

\ 4

Challenge: Application design

+ Componentization,
extensibility, scalability,
reusability, interoperability

» Build on libraries and motif-
based toolkits

[
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Large Scale Petroleum: Combining HPC
and Data Analytics

vy s
’ I e L e G —
o \ . ;

—— \\» v~'

m\‘vlﬂ
’“ '

Seismic Data
Processing and - |
Interpretation =

- — P
—  —— -— -

- A combination of Physics Reservoir
and Data Science Simulation
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Large Hadron Collider

“25GB/s, >200PB

ExaFEL (ECP)

1~ e

-v-v

10PB

ZOTB/mght 73PB

MD Trajectories

~32PB / siulation

Scalable Learning Matters!

Transmission EM

~15GB / sample

[
@ In' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE



Machine Learning for Scientific
Applications

XLA in one picture

LLVMIR

» Today's machine learning frameworks are not easy to scale \/\/\/
- Expensive communication / synchronization in SGD \L/L
« Significant effort optimizing frameworks for CPU, GPU O

 Use of OpenMP

« Research making advances in distributed parallelization
« State of art

« TensorFlow, PyTorch,...

» Heavy optimization of operations

« Otherwise, much lacking in compiler technology
« Language and compiler enhancements

* Improved single node translation

- Efficient translation of associated user code in Python

« DSL features for enhanced ML?

- Path toward integration with scientific application code?

« Representation of data and computation flow for wholistic optimization?

Machine |

Machine 3
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ML at the Edge
| ! Compressed data Eﬁ)cué

Inference at (potentially many) edge devices, major training in central
computer. Regular updates of model must be sent back to edge.
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One Size Fits All? Tasks and Data Flow

Inspired by the data flow execution model (Dennis,
1970s)

— Cilk, TBB, OpenMPp....
— Legion, HPX, Parsec,...
— Google Cloud Dataflow, Tensorflow, ....

- Not a “natural” approach for many applications
- Implementations often forget data locality

al b
1 + 2 *7 Master Thread
1% Task Level
X Q' 2 3
J— ? y 2Task Level /
3 _ 4 + 125 (38 e e e dAn2} 237« v o202 e 0 302"
(1=3)(n=3) (n-4)n-4) .,y -dn-4)
| | 1 g 2 2
# of lterations in tasks
51 =




igh-Performance and High-Productivity Programming With Task-Based

Execution

The performance promise of task /
dataflow runtimes is hampered by the
lack of high-productivity systems that
encourage their use

Can we design a unified system for distributed scientific
applications targeting tasking / dataflow runtimes?:

4

Implement compiler transformations that optimize
programs for a variety of target runtimes (Legion,
Concurrent Collections, ParSEC) and platforms
Design a common intermediate representation to
allow for several input specifications: including
sequential, explicitly parallel (e.g OpenMP) and
domain specific languages

Embed topological information and exploit it to
find optimal task and data mappings that take
locality fully into account

Develop intra-node work and data partitioning
strategies to exploit multi-GPU execution

Can we extend this to include ML frameworks?

Task IR

CnC
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Are We There Yet?

« High Performance Computing, Cloud Computing, Edge
Computing, Fog Computing
— Computing anywhere, anytime, any devices
— Extreme Heterogeneity, Deep Memory Hierarchy
— Performance, Resilience, Elasticity, Productivity, Power

« Data-driven, scientific and Al code in (peaceful?) co-
existence

The Internet of Things

— How do we pr'ogr'am these complex systems?
Q IACS s






