
Programming for the Future : Are We There
Yet? 

Barbara Chapman
Stony Brook University

Brookhaven National Lab

SPPEXA Workshop, Versailles, March 21, 2019

We Live in Interesting
Times  

Development of large-scale applications is
challenging. It is becoming much more so.
❑ Increasing complexity of computer hardware

❑ Diversity in large-scale platforms
❑ Growing diversity of applications and users

❑ Traditional scientific computations, AI,
combination, workflows

❑ Increasing need for dynamic program adaptation
❑ To handle changes in computation or

resources
❑ Changing expectations on part of application

developers
❑ Python, TensorFlow, PyTorch, …

❑ Scalable performance, performance portability,
productivity; power saving

Evolution of DOE Leadership Class Systems

Name Titan Mira Cori Theta Summit Sierra Perlmutter
System peak
(PF)

27 10 Haswell: 2.81
KNL: 29.5

11.69 200 125

Peak Power
(MW)

9 4.8 4.2 1.7 13.3 6

Total system
memory

710TB 768 TB Haswell:
298.5 TB DDR4
KNL: 1.06 PB
DDR4 +
High Bandwidth
Memory

1475 TB:
843 DDR4 +
70 MCDRAM
+ 562 SSD

2.8 PB:
DDR4,
HBM2,
PB persistent,
memory

1.4 PB
DDR4,
HBM2,
PB persistent,
memory

Node
performance
(TF)

1.452 0.204 Haswell: 1.178
KNL: 3.046

2.66 >40

Node Processors AMD Opteron
NVIDIA K20x

64-bit
PowerPC
A2

Intel Haswell
Intel KNL

Intel KNL 2 POWER9
6 NVIDIA Volta
GPUs

2 POWER9
4 NVIDIA Volta
GPUs

AMD EPYC
(Milan)
NVIDIA GPU

System Size
(nodes)

18,688
nodes

49,152 Haswell; 2,388
nodes
KNL: 9,688 nodes

4,392 nodes ~4600 nodes 4320 > 4000 node
CPU-only
partition

System
Interconnect

Gemini 5D Torus Aries Aries Dual Rail EDR-
IB

Dual Rail EDR-
IB

Cray Slingshot

File System 32 OB
1 TB/s
Lustre

26 PB
300 GB/s
GPFS

28 PB
>700 GB/s
Lustre

10 PB
744 GB/s
Lustre

120 PB
1 TB/s
GPFS

30 PB
4 TB/s
Lustre

Accelerated node

• Outside of quantum, neuromorphic, architectures expected to evolve into “extreme” versions of today’s
systems

• 3D stacked processors, less cache, more on-die memory, more specialization, optical interconnects
• We need programming languages that meet tomorrow’s needs as well as today’s application goals

• Address needs of systems with diverse, extremely complex memory hierarchies
• Able to handle more (and more kinds of) devices and high core counts
• Facilitate interoperability, especially with internode approaches

FPGA DNN

Nodes N – N+M

More cores, less data
sharing

Specialization

Faster,
larger

networks

Exascale and Beyond

IESP Programming Models 
International Exascale Software Project, 2010-11

Proposed timeline

Interoperability
among existing

programming models

Fault-tolerant MPI

Standard programming model
for

heterogeneous nodes

System-wide high-level
programming model

Exascale programming
models implemented

Exascale programming
model(s) adopted

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Your M
etric

Candidate exascale
programming models

defined

A Layered Programming Approach

DSLs, other means for application scientists to provide information

Adapted versions of today’s portable parallel programming APIs
(MPI, OpenMP, PGAS, Charm++)

Maybe some non-portable low-level APIs (threads, CUDA, Verilog)

Machine code, device-level interoperability stds, powerful runtime

Computational
Chemistry

Climate
Research Astrophysics

New kinds
of info

Familiar

Custom

Very low-
level

Applications

Heterogeneous
Hardware

…

Summit

 
  
  

2 Power9s, 6 GPUs per node

27,648 NVIDIA Tesla V100s, each
with:
• 5120 CUDA cores
• 640 Tensor cores
• 300 GB/s BW (NVLink 2.0)
• 20MB registers, 16MB cache,

16GB HBM2 @900 GB/s
• 7.5 DP TFLOPS; 15 SP TFLOPS,

120 FP16 TFLOPS
Tensor cores do mixed precision
multiply add of 4x4 matrices

The Modeling & Simulation community can benefit from

utilizing mixed / reduced precision

• Eg: Possible to achieve 4x FP64 peak for 64bit LU on

V100 with iterative mixed precision (Dongarra et al.)

Programming: HPC vs. DL
Nodes in a cluster

Processor

M

Processor

M

Processor

M

Network for Data Exchange

••••
••••
••••
• Shared Memory

C C C C C C

SMP Multicore Architecture

Bus or Switch Network

Programmed using MPI Programmed using OpenMP

TensorFlow
programming
interface

Portable parallel programming
since 1997
• Compiler directives

• Data, task, SIMD
parallelism

• Multicores, GPUs

• User specifies the strategy,
not the details

Maintained by industry
consortium
• It is now easy for

academics to join
The mission of the OpenMP ARB
(Architecture Review Board) is to
standardize directive-based multi-language
high-level parallelism that is performant,
productive and portable.

OpenMP 4.5 – Accelerator Model

• OpenMP 4+ supports heterogeneous systems
(accelerators/devices)

• Accelerator model
– Host device and attached
– One or more ta devices

GPU(s)Xeon Phi(s) –
(Accelerator and self-hosted)

Host Device
(CPU Multicore)

Single device attached
Multiple devices attached

With attached
accelerator(s)

Case study: BerkeleyGW mini-application named GPP

• BerkeleyGW is a
C++ application
which computes
the excited state
properties of
materials

• GPP contains the
self-energy
computation:
large matrix
reductions over
complex arrays
in a single loop
nest of 4 loops

Results from: Rahulkumar Gayatri, "A Case Study for
Performance Portability Using OpenMP 4.5", WACCPD-18

The OpenMP implementation with XL compiler achieves
approximately the same run time as a tuned CUDA
implementation

Chris Daley, NERSC

Emerging OpenMP Features

❑ New features in OpenMP 5.0
❑ Memory model: deal with memory heterogeneity

❑ “concurrent” directive: descriptive parallel method

❑ Also support for unified memory, deep copy of data, metadirectives, task
affinity, and more

❑ Significant implementation effort to support these well

#pragma omp allocate(A) allocator(omp_high_bw_mem_alloc)

#pragma omp for order(concurrent) for (int i = 0; i < N; i++) {…}

Extreme Heterogeneity: Memory
Management

• Expect significantly more complex 
memory systems in the future

• Programming environment innovations are required
to cope with such complexity

• Programming model
– Provide high level data abstractions
– Improve memory systems’ programmability
– Integrate performance modeling

• Compiler and runtime
– Unified memory optimizations (prefetching,

pinning) to avoid thrashing
– Coarse grained data optimization
– Better usage of hardware capabilities e.g. avoid

caching of non-temporal accesses

OpenMP Loop Feature
• Work-sharing directive: split

loop iterations among threads

• Significant challenges: large
reduction basic blocks, irregular
accesses (e.g. a[b[i]]), deeply
nested conditionals, deep
copy / allocation at target
(where is my data?)

• Strategies vary per architecture

#pragma omp for order(concurrent)
for (i = 1; i < N; i++) {
 f(A,i);
}

thread3 thread4thread1 thread2

i=[1..N/4]

i=[N/4+1..N/2]

i=[N/2+1..3N/4]

i=[3N/4+1..N]

void f(double A[N+1], int i) {
 if (A[i] > 0.5)
 A[i] += i;
}

Where is A?
Where should

it be?

Model-driven, Composable and Multi-
Target Compiler Optimizations

Motivation: reduce
performance gap
between general
purpose and domain
specific compiler
frameworks

Impact: substantial
performance
improvements,
reduced application
tuning time

Martin Kong: To appear in ACM Programming Language
Design and Implementation, PLDI’19

Kernel Fusion/Decomposition for Automatic GPU-
offloading

Motivation: automatic
GPU-offloading
capabilities in LLVM to
maximize application
performance and user
productivity

Impact: immediate
benefit for medium to
large scale
mathematical libraries
(e.g. Grid++ Lattice
QCD parallel library)

Third Place, ACM Student Research Competition at the International
Conference of Code Generation and Optimization (CGO’19, Washington
DC)
Alok Mishra, Martin Kong, Barbara Chapman

 
Model-Driven  
Translation 
 

Cost models

Processor model
Cache model

Parallel model

Loop overhead

Parallel overhead

Machine cost

Cache cost

Reduction cost

Computational
resource cost

Dependency
latency cost
Register spill

 cost

Cache cost
Operation cost

Issue cost
Mem_ref cost

TLB cost

HT3 BW vs Threads

BW

(M
B/

s)

0

4500

9000

Thread Configuration (# of remote + # of local threads)

1+22+12+21+33+14+11+42+33+23+34+22+45+11+53+42+55+26+11+64+43+56+22+64+53+66+35+54+6

4590,7893676,29872758,2258
5505,723

4134,1149
6758,7863

2451,7159
4898,5849

3676,1309

8906,8519

2108,68392574,9705

6046,2975
4286,8672

8119,3898

2167,1573

5231,9194
2697,74053567,48563064,6816

4546,6893
7083,3023

2255,98132402,6061

6033,2904
3551,39352691,892

4853,0811

1+2
2+1
2+2
1+3
3+1
4+1
1+4
2+3
3+2
3+3
4+2
2+4
5+1
1+5
3+4
2+5
5+2
6+1
1+6
4+4
3+5
6+2
2+6
4+5
3+6

Compilers

Programming
Models

ML Models

Exploiting ML in Software Stack

❑Design: determine best target
machine given inherent application
traits (memory or compute driven,
accuracy?)
❑Compiler/runtime support for
stringent power caps
❑Resiliency and fault tolerance:
when and what to checkpoint?
❑Compiler options and runtime
features embody a large and
complex optimization space
❑Impact on application performance
❑Different application classes
require different optimization
strategies

CPU

GPU

FPGA

Application
Design

Resiliency /
Fault Tolerance

HW + SW
Selection

Changing Workloads 
Data Analytic Computing (DAC) and Modeling and Simulation

(M&S)

Doug Kothe, Exascale Computing Project

Large Scale Petroleum: Combining HPC
and Data Analytics

Seismic Data
Processing and
Interpretation

Reservoir
Simulation

Oilfield Data Analytics

• A combination of Physics
and Data Science

Scalable Learning Matters!

Large Hadron Collider

25GB/s, >200PB

LSST

20TB/night, 73PB

Transmission EM

3GB/s

ExaFEL (ECP)

10PB

MD Trajectories

~32PB / simulation

Meta-genomics

~15GB / sample

Machine Learning for Scientific
Applications

• Today’s machine learning frameworks are not easy to scale
• Expensive communication / synchronization in SGD
• Significant effort optimizing frameworks for CPU, GPU
• Use of OpenMP
• Research making advances in distributed parallelization

• State of art
• TensorFlow, PyTorch,…
• Heavy optimization of operations
• Otherwise, much lacking in compiler technology

• Language and compiler enhancements
• Improved single node translation
• Efficient translation of associated user code in Python
• DSL features for enhanced ML?
• Path toward integration with scientific application code?
• Representation of data and computation flow for wholistic optimization?

ML at the Edge

!

!

!

Compressed data

Updated model

HPC /
Cloud

Inference at (potentially many) edge devices, major training in central
computer. Regular updates of model must be sent back to edge.

One Size Fits All? Tasks and Data Flow
• Inspired by the data flow execution model (Dennis,

1970s)
– Cilk, TBB, OpenMP,…
– Legion, HPX, Parsec,…
– Google Cloud Dataflow, Tensorflow, ….

- Not a “natural” approach for many applications
- Implementations often forget data locality

The performance promise of task /
dataflow runtimes is hampered by the
lack of high-productivity systems that
encourage their use

Can we design a unified system for distributed scientific
applications targeting tasking / dataflow runtimes?:

❑ Implement compiler transformations that optimize
programs for a variety of target runtimes (Legion,
Concurrent Collections, ParSEC) and platforms

❑ Design a common intermediate representation to
allow for several input specifications: including
sequential, explicitly parallel (e.g OpenMP) and
domain specific languages

❑ Embed topological information and exploit it to
find optimal task and data mappings that take
locality fully into account

❑ Develop intra-node work and data partitioning
strategies to exploit multi-GPU execution

❑ Can we extend this to include ML frameworks?

High-Performance and High-Productivity Programming With Task-Based
Execution

C
+

OMP

C
(seq)

DSL

Task IR

Legion CnC PaRSEC

Are We There Yet?
• High Performance Computing, Cloud Computing, Edge

Computing, Fog Computing
– Computing anywhere, anytime, any devices
– Extreme Heterogeneity, Deep Memory Hierarchy
– Performance, Resilience, Elasticity, Productivity, Power

• Data-driven, scientific and AI code in (peaceful?) co-
existence

Gatew

ay
Gatew

ay
Gatew

ay

How do we program these complex systems?

Questions?

