rds Advanced Hybrid Monte Carlo

ds for
= OYSlem

Linear Algebra for Extreme-Scal
test Advances and Result

Vassil ﬁi‘exandrov (ICREA-BSC, ITES
Aneta Kara"-lvanova (ICT) .“ -x
Diego Davila (IBSC) '

Ant bﬂ#% .
(I)rs]c?anrlll—fesdueve_l'(T'I'ESM) =1Ek} i | }

Barcelona

Z cnolégico
Supercomputing d Monterrey
Center
Centro Nacional de Supercomputacio

Overview

(€ Introduction -

(€ Needs and Motivation

(€ Overview - Monte Carlo Hybrid Methods
(€ Monte Carlo vs MSPAI

(€ Experimental results

(7. . Y
((¥riclusions

performa

Processor

Memory

Networks

Supercomputing

entro Nacional de Supercomputacion

1,1 PFLOPS

6.196 8-core Intel
SandyBridge EP E5-
2670/1600 20M 2.6GHz
84 Xeon Phi 5110 P

100,8 TB

2000 TB

Infiniband FDR10, GbE
SUSE Linux ES

Important Properties of Algorithms

- Efficient Distribution of the compute
data.

* Minimum communication/
communication reducing algorithms

- Increased precision is achieved adding
extra computations (without restart) .

- Fault-Tolerance achieved through
adding extra computations

Challenges

To achieve excellent results scalability at
all levels would be required:

€ Mathematical models level

(€ Algorithmic level
€ Systems level

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Barcelona
Supercomputing

Center
Centro Nacional de Supercomputacion

®

Monte Carlo Methods FOR LINEAR ALGEBRA

|dea of the Monte Carlo method

(€ Wish to estimate the quantity a

(€ Define a random variable €

(€ Where ¢ has the mathematical expectation a
(€ Take N inde _

N
E=qy 2 &

=1

ations ¢i of ¢

- Then

Aad
U
-

- And according to the Law of Large Numbers (LLN)

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Motivation: MC for Linear Algebra

(€ Many scientific and engineering problems revolve around:
- inverting a real n by n matrix (MI)
- Given B
- Find B-1

- solving a system of linear algebraic equations (SLAE)
- GivenBand b
- Solve forx, Bx=Db
+ Or find B-1 and calculate x = B-1b

Barcelon

Supercomputing

Center

Centro Nacional de Supercomputacion

Motivation cont.

(€ Traditional direct Methods with dense matrices
— Gaussian elimination
- Gauss-Jordan
- Both take O(n3) steps

(€ Time prohibitive if
- large problem size

- timely solution required

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Monte Carlo Methods

({ Fast stochastic approximation

(€ Very efficient in finding a quick rough estimation
- element or row of inverse matrix

- component of solution vector

Reason for using Monte Carlo

(€ O(NT) steps to find an element of the
- Inverse matrix B

— solution vector x

(€ Where
— N Number of Markov Chains

- T length of Markov Chains

(€ Independent of n - size of matrix or problem

ff@ Beroelons g o ,
(| gorithms-can be efficiently parallelised

Parallel Algorithms

(€ Multi-tiered process NPT
L
MASTER SETUP
/ i \xl
(€ Using parallel Monte Carlo to find a onis || caes || caes
rough inverse of B s
- . . '|
(€ Original algorithm for diagonally e —
)] MASTER DISTR -
dominant matrices i
cucs | | cacs | | caics
. L AL
(€ Extension to the general case non- N T
diagonally dominant matrices e
with ”A” <1 DECISION

Y
INVERSE

({ Parallel iterative refinement to improve
(ceuracy and retrieve final inverse

Supercomputing
Center
Centro Nacional de Supercomputacion

Parallel Algorithm

(€ Start with a diagonally dominant matrix *B

(€ Make the split *B = D - B1
- D has only the diagonal elements of *B

- B1 includes only off-diagonal elements

(€ Compute A =D-1B1

((If we had started with a matrix B that was not diagonally
dominant then an additional splitting would have been made
at the beginning, B = *B - ("B - B), and a recovery section
would be needed at the end of the algorithm to get

~3--f0m "B-1
Supercomputing
Center
Centro Nacional de Supercomputacion

Parallel Algorithm cont.

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Parallel Algorithm cont.

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Parallel Algorithm cont.

(€ Matrix Inversion using Markov Chain Monte Carlo

Each element in the inverse matrix is

where:

2
_ 6745 - -
» N = (EU—IIAII)) Is the number of Markov Chains

dssy dsqso """ asj —15j

> (j|sj = r) means that only the W, = are

. . . Pss; Psy 52"'_.0.5}-_1 Sj .
included for which s; = r (i.e. the Markov Chain terminates
at r)

[]

rcel
upercomputing

arcelona
nier
ntro Nacional de

ent)

S0

Supercomputacion

Refinement Process

(€ Given a non-singular matrix A., and its inverse Ao | ifwe
define Ry = I — AA, then we perform the following steps for
more accurate inverse computation:

Ai:Ai_l(I—FR@'_l)? RZ:I—AAZ ’5.21?27....,?1

(€ Therefore
R,=1—AA,=1—AA, (I + R,_1),

=I-(I=Ry)U+Ry)=R,_ =R, , == R

L —1 L 2n
(€ Obviously we hffl.'”;,_ A U 1)

[]

rcel
upercomputing

arcelona
utin,
enter
Centro Nacional de Supercomputacion

(]

Refinement Process

(€ The formula shows that Ax approaches A~! when the
convergence of the process is very rapid. We can estimate
the error at stepm of this procedure:

A = TA = (AgAg DA™ = Ag(AAg) ™ = Ao(I — Ro) L.
[An = AT = || = AR = || = Ao = Ro) ™' Ry ||
< [[Aoll [I(T = Ro)~MIl [I1R5™]

kQTTl
— k
(€ We see from the inequality that Aas Innn AS ’rhpllnltlal

| Rol| < p(R,) <

approximate inversion satisfies "u.C' curnaiun o
@es Lm,mber of correct decimal figures increases with a power

< |l 4oll5

Parallel Algorithm cont.

(€ Having used MC for inverting diagonally dominant matrices
the obvious next extension is to see how this algorithm can be
extended to invert general matrices. For this, assume the
general case where ||B|| > 1 and consider the splitting

B=B-C
B—l

(€ From p—1itis then necessary to work back and recover

from

(k=n—-1,n—2,...,0)

(€ To do thisz-1iterative process IS

used ¢~

Bl — g1 | Bk+1Sk+1Bk+1
E— “k4+1

1 — trace (B Sks1)

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Barcelona
Supercomputing

Center
Centro Nacional de Supercomputacion

®

Hybrid VS. Deterministic Methods

Combination of Monte Carlo and SPAI

(€ SPAI — SParse Approximate Inverse Preconditioner

- Computes a sparse approximate inverse M of given matrix A by
minimizing 4 AM = | / in the Frobenius norm

— Explicitly computed and can be used as a preconditioner to an iterative
method

- Uses BICGSTAB algorithm to solve systems of linear algebraic
equations Ax=Db

(€ Sparse Monte Carlo Matrix Inverse Algorithm

- Computes an approximate inverse by using Monte Carlo methods

— Uses an iterative filter refinement to retrieve the inverse

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

(€ Selected test sets
— The University of Florida Sparse Matrix Collection
- Matrix Market

- Other applications

({ Parameter and setting selection
— Computation of pre-conditioner to same accuracy
— Utilized in BICGSTAB , GMRES or other solvers
- RHS generated from input matrix

arcel ona
S p computing

/Innfn TAEA annroach withoiit refinemaent filtar

Sparsity and computation

(€ SPAI computes the Frobenius norm of the input matrix

- Workload depending on the size of the input matrix

(€ Monte Carlo algorithm uses Markov Chains
- Independent of the size of the matrix
- length and number of chains important

— Original algorithm for dense matrices; extended to support general
sparse cases

(€ Experiments have been run using various sparsity (10%-90%)

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Sparsity and computation cont.

==MC0.1 -=MC0.3 =MCO0.5 ==MCO0.7 ==MCO0.9 -=-FRO.1 FR0.3 —FRO0.5 FR0O.7 --FRO0.9

35
Frobenius norm
30
wn 25
o
c
(] /
&}
&
< 20
)
£
=
c
S 15
)
=
(&]
Q
x
w10
Monte Carlo
5
0 = oy ! T T T T T T 1
500 1000 2000 3000 4000 5000 6000 7000 8000 9000

Matrix Size

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Test Matrices

Matrix Dimension Non-zeros Sparsity Symmetry
1. Appu 14,000 1,853 104 0.95% non-symmetric
2. Na5 5,832 305,630 0.46% Symmetric
3. Nonsym_rb at1 | 328473 10,439,197 0.01% non-symmetnic
4, Rdb2048 2 048 12 032 0.29% non-symmetnc
5. Sym_r3 a1 20, 928 588 601 0.13% symmetric
6. Sym_rd a1 82 817 2588 173 0.04% SYMmetric

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Execution Time Breakdown

5004 Preconditioner

B Merge
30%
20%0
10%
0%

B Eroadcast
rdb2043 sym_rd4 all
appu nunsyrn_rﬁ_all sym_r3 all

Time(s)

Figure 1. Execution time breakdown in a 16 cores

execution.
Barcelona
Supercomputing
Center
Centro Nacional de Supercomputacion

®

0%

80%

0%

60%
= 50% Preconditioner
E 40% B Merge
= 20% m Broadcast

20%

10%

0%

rdb2048 sym_rd4 all
appu nunsyrn_rﬁ_all sym_r3 all

Figure 2. Execution time breakdown in a 256 cores
execution.

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

5.00E-003

2.00E-004
5 5.00E-005 ® Almost Optimal
L] ® Uniform
5.00E-006
5.00E-007
rdb2048 sym_rd4 all
appu nunsj.rm_rﬁ_all sym_r3 all

Figure 6. Error calculation when using Uniform and Almost
Optimal distributions with 16 cores.

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Master MP

®

Process
Broadcast
Worker MP
process —
{ 1 process per node) Work partition among
*+—openMP threads
OpenMP
E:read per node) Intemal OpenMP merge
ihreads ——
External MF| merge
e
Barcelona
Supercomputing

Center

Centro Nacional de Supercomputacion

Mixed MPI/OpenMP

25

15 —8— nipkkt120_v9.2
—4— nipkkt120_v10.0

10

16 32 64 128 256 512

Figure 8. Scalability comparison for the two-step broadcast for a
relatively big matrix (3.5M x 3.5M)

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

MC vs MSPAI

—— MSPAI
—#— MC_v9.2
0.01

MC nocomm

16 32 64 128 256 012

Mum. cores

Figure 9. Scalability comparison MSPAI and MC for
matrix appu

Barcelona
Supercomputing
Center

Centro Nacional de Supercomputacion

nonsym_r5 all

100 B
~—
10 _.\.\.\.
! — *
= & + * —8— MSPAI
2 01 —— MC_v9.2
= 0.01 MC_nocomm
0.001
0.0001
16 32 64 128 256 512
Mum. cores

Figure 10. Scalability comparison MSPAI and MC for
matrix non-sym r5 a1.

Barcelona
Supercomputing
Center

Centro Nacional de Supercomputacion

MC vs MSPAI

rdb2048
1
|
0.1 g — — —=
i +
0.01 > *r—
—— il MSPAI
2 0.001
< : —— MC_v9.2
= 0.0001 MC_nocomm
0.00001
0.000001
16 32 64 128 256 512
Mum. cores

Figure 11. Scalability comparison MSPAI and MC for matrix
rdb2048.

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Preconditioner calculation

100
10
1
O mMC
E 0.1 m MSPAI
- J
0.001
rdb2048 sym_rd all
appu nonsym_rs all sym_r3_all

Figure 12. Fastest execution time achieved during the
preconditioner calculation.

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

GMRES timing

1000
100
10
g 1 mMC

£ B MSPAI
= 0.1
0.01
0.001

rdb2048 sym_rd all
appu nonsym_r5_all sym_r3 all

Figure 13. Time required by the solver to find the solution for the
preconditioned system.

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Total time

1000
100
10
2 mMC
E - m MSPAI
- J
0.01
rdb2048 sym_rd4 all
appu nonsym_rs all sym r3 all

Figure 14. Total time = Preconditioner construction time + Solver
execution time.

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Low discrepancy (quasirandom) sequences

O The quasirandom sequences are deterministic sequences constructed to be
as uniformly distributed as mathematically possible (and, as a consequence, to
ensure better convergence for the integration)

O The uniformity is measured in terms of discrepancy which is defined in the
following way: For a sequence with N points in [0,1]s define

RN(J) = 1/N#{xn in J}-vol(J) for every J € [0,1]s
DN* = supE* |RN(J)|,
E* - the set of all rectangles with a vertex in zero.
O As-dimensional sequence is called quasirandom if
DN* < c(log N)s N-1
0O Koksma-Hlawka inequality (for integration):
[f] = V[f] DN*

e;g ,\{,[f] is the variation in the sense of Hardy-Kraus)

e5 9 Sozo
p “Aref fp"fhp arror ic O((loa Nle N-1)

PRNs and QRNs

SPRNG Sequence
4096 Points of SPRNG Sequence

x(+1)

F) P P O T

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Dimension 3

0.9

08 |
0.7
06 !
05

04"

0.3

02 -

0.1

2-D Projection of Sobol' Sequence
4096 Points of Sobol Sequence

%

0.1 . 03 04 05 06 07 08 09

Dimension 2

(€ Discrepancy of real random numbers:
D*N = O(N-1/2 (log log N)-1/2)

({ Klaus F. Roth (Fields medal 1958) proved the following lower
bound for star discrepancy of N points in s dimensions:

D*N =O(N-1 (log N)(s-1)/2)

({ Sequences (indefinite length) and point sets have different
“best” discrepancies:

B Sequence: D*N =< O(N-1 (log N)s-1)
((P'mmrat set D*N < O(N-1 (log N)s-2)

Most often used sequences (Halton Sequence)

(€ Let n be an integer presented in base p. The p-ary
radical inverse function is defined as

_ bo b1 | b

where p is prime and bi comes from .
n = by + b1p + ... + bmp™,

with0 ! bi<p

(Pp1(n), Ppo(n), ..., Pp(n))

(€ An s-dimensional Halton sequence is defined as:

with pl p2 ..., ps being relatively prime, and usually the first §

Barcelonp rlmes
percomputi
L @i:..fune 5-8 Sozopol
Centro Nacional de Supercomputacion

Most often used sequences

(€ In our computations we have used scrambled modified
Halton sequence [Atanassov 2003]:

xn(i) = >j=0m imod (aj(i)kij+1 + bj(i),pi) pi—j-1

(scramblers bj(i), modifiers ki in [0, pi —1])

@ Barcstone
L 1 Ediine5-9,-5626p0)

Most often used sequences (Sobol)

o Sobol sequence (1967) {xn = (xn(1), xn(2), ..., Xn(s))}

o The j-th coordinate of the n-th point of s-dimensional Sobol
sequence xn = (xn(1), xn(2), ..., xn(s)) is generated through the
recursion:

xn(j) = b1v1(j) ® b2v2(j) ®... bwvw(j)

where vi(j) is i-direction number for dimension j, and & is bit-by-bit
exclusive-or operation (bi are the coefficients of representation of n in
base 2)

o How to determine vi(j) : for each dimension a different primitive
polynomial is chosen and its coefficients are used to define:

Barcelona
Supercomputing

L Eedeme 5-9, Sozop,ol
Centro Nacional de Supercomputacion

Quasirandom Sequences and their scrambling

(€ Unfortunately, the coordinates of the quasirandom sequence
points in high dimensions show correlations. A possible solution
to this problem is the scrambling.

(€ The purpose of scrambling:

- To improve 2-D projections and the quality of quasirandom
sequences in general

- To provide practical method to obtain error estimates for QMC

- To provide simple and unified way to generate quasirandom
numbers for parallel computing environments

- To provide more choices of QRN sequences with better (often
optimal) quality to be used in QMC applications

@ Barcetona
L 1 2;7’3%@61/56'9%8%%0'

Scrambling techniques

(€ Scrambling was first proposed by Cranley and Patterson (1979) who took
lattice points and randomized them by adding random shifts to the
sequences. Later, Owen (1998, 2002, 2003) and Tezuka (2002)
independently developed two powerful scrambling methods through
permutations

(€ Although many other methods have been proposed, most of them are
modified or simplified Owen or Tezuka schemes (Braaten and Weller,
Atanassov, Matousek, Chi and Mascagni, Warnock, etc.)

(€ There are two basic scrambling methods:
- Randomized shifting
— Digital permutations
(Permuting the order of points within the sequence)

(€ The problem with Owen scrambling is its computational complexity

B rcelona
((EPCH?@FS‘@ Sozopol

Scrambling

(€ Digital permutations: Let (x(1)n, x(2)n, . . ., X(s)n) be any
quasirandom pointin [0, 1)s, and (z(1)n, z(2)n, . . ., z(sS)n)
IS its scrambled version. Suppose each x(j)n has a b-ary
representation x(j)n, =0. x(j)n1 x(j)n2 ... x(j)nK, ... with K
defining the number of digits to be scrambled. Then

z(j)n = o(x(j)n), where o={P1, ..., PK} n @i, is a
uniformly chosen permutation of the digits {0,1,...,b-1}.

(€ Randomized shifting has the form
zn=xn +r(mod 1),

where xn is any quasirandom number in [0, 1)sand ris a
single s-dimensional pseudorandom number.

Barcelona
Supercomputing

L Eedeme 5-9, Sozop,ol
Centro Nacional de Supercomputacion

Two-dimensional projection of Halton sequence and

scrambled Halton sequence

o Mote new toolbar buttons: data brushing 2 linked plots ‘.f/‘: E} Play video

Halton

=
=
‘m
=
[uk}
=
_
lap]
L*
0.4 06
2 dimension
Barcelona
Supercomputing

Eorttine. 5e9,.S5020p0!

dimension 3

3 dimension

Scrambled Halton

2 dimension

Two-dimensional projection of Halton sequence and scrambled Halton

sequence (dimension 8)

Halton | Scrambled Halton
) ’ ;] g ¥ %

g dimension
g dimension

0 0.2 0.4 06 0s 1
7 dimension 7 dimension

Barcelona
Supercomputing

L Eedeme 5-9, Sozopol
Centro Nacional de Supercomputacion

Two-dimensional projection of Halton sequence and scrambled Halton

sequence (dimension 99)

89 dimension
59 dimension

0 I I I I o 3 Al & . i % i
0.z 0.4 0.6 0a 1] 0.2 0.4 06 0.8 1
92 dimension 93 dimension

Barcelona
Supercomputing

L Eedeme 5-9, Sozopol
Centro Nacional de Supercomputacion

Error estimate for QMC

(€ Scrambling provides a practical method to obtain
error estimates for QMC based by treating each
scrambled sequence as a different and independent
random sample from a family of randomly scrambled
quasirandom numbers, thus allowing standard
(Gaussian) confidence intervals to be considered.

(€ QMC error for Markov chain based problems:
ON (¢(Q")) = V(¢ ° T'-1). (D*N(Q))

where Q = {yi} is a sequence of vectors in [0,1)sT, Q' =
{wi} is a sequence of quasirandom walks generated

@ Q-using the magpina ', o

®

300

Matrix Si5H12

250

Time (seconds)
N
o
o

150

1
pseudorandom numbers —e—
Sobol sequences —5—

100

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

32

Footer

64 128
Number of Processors

Matrix Si5H12
800 — . .

1
Halton sequences —o—
Sobol sequences —&—

700]
600 i
500 f |

400 r)

Time (seconds)

300]

200 | Ek\W3\\\\\wa‘_h___‘__"‘EF__________________________:: '

100 - ' : '
8 16 32 64 128

Number of Processors
@ Sorvwioms
geerzggel\::icional de Supercomputacion F O Ote r

®

400 .

Matrix Si10H16

350

300 f

250

Time (seconds)

200

150

|
pseudorandom numbers —e—
Sobol sequences —&—

100 :

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

32

Footer

64 128
Number of Processors

2000

1500

Time (seconds)
o
o
o

500

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Matrix Si10H16

1
Halton sequences —o—
Sobol sequences —&—

16 32 64

128

Number of Processors

Footer

MC vs QMC

Precision ep 0.5
0,16

0,14

0,12

o
=

Seconds

—MC Na5
Halton Na5

—MC appu
0,08

—Halton appu
0,06

16 32 64
Processors

Figure 15. MC and QMC preconditioners execution time

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

MC vs QMC

Precision ep 0.1

0,25
0,2
w 0,15
° —MC appu
o
D -Halton appu
01
i —MC Na5
Halton Na5
0,05
0
16 32 64
Processors

Figure 16. MC and QMC preconditioners execution time

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

MC vs QMC

Matrix QMC-Halton, eps=0.5 MC, eps=0.5 QMOC-Halton, eps=0.1 textb{MC, eps=(0.1
Appu (0. 135902 (.139417 1.62762 2.T8(41
besstmld 106,616 107.129 1159986 120,103
Nad 0.012513 (.013384 0.027767 (.025393
Rdb20048 (0.158109 (.197112 (. 17864 (L 170368
Sil0H16 (.0312071 (0.0299697 (). 436300 (.494 1460

Figure 17. MC and QMC solver times

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Further Improvements

Discarding elements of the matrix

MMCMCMI, matrix monsym_rl_all

0.04251
0.0400
0.03751
0.03501

03251

o o

runtime [sac|

0300
0.027T54

0.02501

0.0225

0.00 0.02 0.04 0.06 0.08

Entried drogped [5100]

Figure 3. Execution time of the preconditioner
computation.

matrix: nonsym r3 all drop % : 8.0, tal: 0.0625

I total runbirme

Runtime [sec)

1071+

G 107

&
L1
=

MCMCM|

method

Figure 2. Total time = preconditioner construction
time + solver execution time.

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Further Improvements

Preconditioner carmputatiaon, N=[512]

102 N MOMOM
. MSPA

[
=

runtime [sec)

10

ID1_2 P3_T stiffness rdbi2048 sym_rh all norsym r3 all

Total time: preconditioner + solver

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Further Improvements

Runtime [sec]

107

107 4

107 4

Matbrix: sym_rb_all, drop: 0.0 %

== MCMCMI
—— M5PA

26

2'? 28 29 ESII:I
Number of processes

Figure 7. Execution time of the preconditioner
computation for varying number of processes.
Transition probabilities are computed by the mas-
ter process and broadcast to the workers.

=
O
CX]

Runtime [sec]

107 5

Matri: sym_ré all, drop: 0.0 %

=t MCMIMI
e [5P

——

;_.'.1

25 26 27 2l 2%
Mumber of processes

Figure 8. Execution time of the preconditioner
computation for varying number of processes with
transition probabilities not being broadcast.

®

Barcelona
Supercomputing
Center

Centro Nacional de Supercomputacion

Further Work

(€ MC stochastic projection approach
({ GPU based implementations

(€ Further experiments and comparisons

Conclusions and Future Work

(€ MC and QMC provide good quality preconditioners

(€ Need to enhance the reuse of sub-chains in longer Markov
Chains

(€ quasi-Monte Carlo and MC deliver the same quality
preconditioners

Barcelona
Supercomputing

Center
Centro Nacional de Supercomputacion

Questions ?

mailto:vassil.alexandrov@bsc.es
http://www.bsc.es/computer-sciences/extreme-computing
http://www.bsc.es/computer-sciences/extreme-computing
http://www.bsc.es/computer-sciences/extreme-computing

	Diapo 1
	Overview
	BSC Machines – MareNostrum3
	Important Properties of Algorithms
	Challenges
	Monte Carlo Methods FOR LINEAR ALGEBRA
	Idea of the Monte Carlo method
	Motivation: MC for Linear Algebra
	Motivation cont.
	Monte Carlo Methods
	Reason for using Monte Carlo
	Parallel Algorithms
	Parallel Algorithm
	Parallel Algorithm cont.
	Parallel Algorithm cont.
	Parallel Algorithm cont.
	Refinement Process
	Refinement Process
	Parallel Algorithm cont.
	Hybrid VS. Deterministic Methods
	Combination of Monte Carlo and SPAI
	Experiments
	Sparsity and computation
	Sparsity and computation cont.
	MC vs MSPAI
	Test Matrices
	Execution Time Breakdown
	Execution Time Breakdown
	Probability calculation
	Employing Mixed MPI/OpenMP version
	Mixed MPI/OpenMP
	MC vs MSPAI
	MC vs MSPAI
	MC vs MSPAI
	Preconditioner calculation
	GMRES timing
	Total time
	Low discrepancy (quasirandom) sequences
	PRNs and QRNs
	Some facts
	Most often used sequences (Halton Sequence)
	Most often used sequences
	Most often used sequences (Sobol)
	Quasirandom Sequences and their scrambling
	Scrambling techniques
	Scrambling
	Diapo 47
	Diapo 48
	Diapo 49
	Error estimate for QMC
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	MC vs QMC
	MC vs QMC
	MC vs QMC
	Further Improvements
	Further Improvements
	Further Improvements
	Further Work
	Conclusions
	Conclusions and Future Work
	Diapo 64

