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Overview

(€ Introduction -

(€ Needs and Motivation

(€ Overview - Monte Carlo Hybrid Methods
(€ Monte Carlo vs MSPAI

(€ Experimental results
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Important Properties of Algorithms

- Efficient Distribution of the compute
data.

* Minimum communication/
communication reducing algorithms

- Increased precision is achieved adding
extra computations (without restart) .

- Fault-Tolerance achieved through
adding extra computations




Challenges

To achieve excellent results scalability at
all levels would be required:

€ Mathematical models level

(€ Algorithmic level
€ Systems level
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Monte Carlo Methods FOR LINEAR ALGEBRA




|dea of the Monte Carlo method

(€ Wish to estimate the quantity a

(€ Define a random variable €

(€ Where ¢ has the mathematical expectation a
(€ Take N inde _

N
E=qy 2 &

=1

ations ¢i of ¢

- Then

Aad
U
-

- And according to the Law of Large Numbers (LLN)
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Motivation: MC for Linear Algebra

(€ Many scientific and engineering problems revolve around:
- inverting a real n by n matrix (MI)
- Given B
- Find B-1

- solving a system of linear algebraic equations (SLAE)
- GivenBand b
- Solve forx, Bx=Db
+ Or find B-1 and calculate x = B-1b
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Motivation cont.

(€ Traditional direct Methods with dense matrices
— Gaussian elimination
- Gauss-Jordan
- Both take O(n3) steps

(€ Time prohibitive if
- large problem size

- timely solution required
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Monte Carlo Methods

({ Fast stochastic approximation

(€ Very efficient in finding a quick rough estimation
- element or row of inverse matrix

- component of solution vector




Reason for using Monte Carlo

(€ O(NT) steps to find an element of the
- Inverse matrix B

— solution vector x

(€ Where
— N Number of Markov Chains

- T length of Markov Chains

(€ Independent of n - size of matrix or problem
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Parallel Algorithms

(€ Multi-tiered process NPT
L
MASTER SETUP
/ i \xl
(€ Using parallel Monte Carlo to find a onis || caes || caes
rough inverse of B s
- . . '|
(€ Original algorithm for diagonally e —
) ] MASTER DISTR -
dominant matrices i
cucs | | cacs | | caics
. L AL
(€ Extension to the general case non- N T
diagonally dominant matrices e
with ”A” <1 DECISION

Y
INVERSE

({ Parallel iterative refinement to improve
( ceuracy and retrieve final inverse
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Parallel Algorithm

(€ Start with a diagonally dominant matrix *B

(€ Make the split *B = D - B1
- D has only the diagonal elements of *B

- B1 includes only off-diagonal elements

(€ Compute A =D-1B1

(( If we had started with a matrix B that was not diagonally
dominant then an additional splitting would have been made
at the beginning, B = *B - ("B - B), and a recovery section
would be needed at the end of the algorithm to get

~3--f0m "B-1
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Parallel Algorithm cont.
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Parallel Algorithm cont.
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Parallel Algorithm cont.

(€ Matrix Inversion using Markov Chain Monte Carlo

Each element in the inverse matrix is

where:

2
_ 6745 - -
» N = (EU—IIAII)) Is the number of Markov Chains

dssy dsqso """ asj —15j

> (j|sj = r) means that only the W, = are

. . . Pss; Psy 52"'_.0.5}-_1 Sj .
included for which s; = r (i.e. the Markov Chain terminates
at r)
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Refinement Process

(€ Given a non-singular matrix A., and its inverse Ao | ifwe
define Ry = I — AA, then we perform the following steps for
more accurate inverse computation:

Ai:Ai_l(I—FR@'_l)? RZ:I—AAZ ’5.21?27....,?1

(€ Therefore
R,=1—AA,=1—AA, (I + R,_1),

=I-(I=Ry)U+Ry)=R,_ =R, , == R

L —1 L 2n
(€ Obviously we hffl.'”;,_ A U 1 )

[ ]
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Refinement Process

(€ The formula shows that Ax approaches A~! when the
convergence of the process is very rapid. We can estimate
the error at stepm of this procedure:

A = TA = (AgAg DA™ = Ag(AAg) ™ = Ao(I — Ro) L.
[An = AT = || = AR = || = Ao = Ro) ™' Ry ||
< [[Aoll [I(T = Ro)~MIl [I1R5™]

kQTTl
— k
(€ We see from the inequality that Aas Innn AS ’rhpllnltlal

| Rol| < p(R,) <

approximate inversion satisfies "u.C' curnaiun o
@es Lm,mber of correct decimal figures increases with a power

< |l 4oll5




Parallel Algorithm cont.

(€ Having used MC for inverting diagonally dominant matrices
the obvious next extension is to see how this algorithm can be
extended to invert general matrices. For this, assume the
general case where ||B|| > 1 and consider the splitting

B=B-C
B—l

(€ From p—1itis then necessary to work back and recover

from

(k=n—-1,n—2,...,0)

(€ To do thisz-1iterative process IS

used ¢~

Bl — g1 | Bk+1Sk+1Bk+1
E— “k4+1

1 — trace (B Sks1)
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Combination of Monte Carlo and SPAI

(€ SPAI — SParse Approximate Inverse Preconditioner

- Computes a sparse approximate inverse M of given matrix A by
minimizing 4 AM = | / in the Frobenius norm

— Explicitly computed and can be used as a preconditioner to an iterative
method

- Uses BICGSTAB algorithm to solve systems of linear algebraic
equations Ax=Db

(€ Sparse Monte Carlo Matrix Inverse Algorithm

- Computes an approximate inverse by using Monte Carlo methods

— Uses an iterative filter refinement to retrieve the inverse
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(€ Selected test sets
— The University of Florida Sparse Matrix Collection
- Matrix Market

- Other applications

({ Parameter and setting selection
— Computation of pre-conditioner to same accuracy
— Utilized in BICGSTAB , GMRES or other solvers
- RHS generated from input matrix

arcel ona
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Sparsity and computation

(€ SPAI computes the Frobenius norm of the input matrix

- Workload depending on the size of the input matrix

(€ Monte Carlo algorithm uses Markov Chains
- Independent of the size of the matrix
- length and number of chains important

— Original algorithm for dense matrices; extended to support general
sparse cases

(€ Experiments have been run using various sparsity (10%-90%)
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Sparsity and computation cont.
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Test Matrices

Matrix Dimension Non-zeros Sparsity Symmetry
1. Appu 14,000 1,853 104 0.95% non-symmetric
2. Na5 5,832 305,630 0.46% Symmetric
3. Nonsym_rb at1 | 328473 10,439,197 0.01% non-symmetnic
4, Rdb2048 2 048 12 032 0.29% non-symmetnc
5. Sym_r3 a1 20, 928 588 601 0.13% symmetric
6. Sym_rd a1 82 817 2588 173 0.04% SYMmetric
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Execution Time Breakdown

5004 Preconditioner

B Merge
30%
20%0
10%
0%

B Eroadcast
rdb2043 sym_rd4 all
appu nunsyrn_rﬁ_all sym_r3 all

Time(s)

Figure 1. Execution time breakdown in a 16 cores

execution.
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rdb2048 sym_rd4 all
appu nunsyrn_rﬁ_all sym_r3 all

Figure 2. Execution time breakdown in a 256 cores
execution.
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5.00E-003

2.00E-004
5 5.00E-005 ® Almost Optimal
L] ® Uniform
5.00E-006
5.00E-007
rdb2048 sym_rd4 all
appu nunsj.rm_rﬁ_all sym_r3 all

Figure 6. Error calculation when using Uniform and Almost
Optimal distributions with 16 cores.
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Master MP

®

Process
Broadcast
Worker MP
process —
{ 1 process per node) Work partition among
*+—openMP threads
OpenMP
E:read per node) Intemal OpenMP merge
ihreads ——
External MF| merge
e
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Mixed MPI/OpenMP

25

15 —8— nipkkt120_v9.2
—4— nipkkt120_v10.0

10

16 32 64 128 256 512

Figure 8. Scalability comparison for the two-step broadcast for a
relatively big matrix (3.5M x 3.5M)
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MC vs MSPAI

—— MSPAI
—#— MC_v9.2
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MC nocomm
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Mum. cores

Figure 9. Scalability comparison MSPAI and MC for
matrix appu
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Figure 10. Scalability comparison MSPAI and MC for
matrix non-sym r5 a1.
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MC vs MSPAI

rdb2048
1
|
0.1 g — — —=
i +
0.01 > *r—
—— il MSPAI
2 0.001
< : —— MC_v9.2
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Figure 11. Scalability comparison MSPAI and MC for matrix
rdb2048.
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Preconditioner calculation

100
10
1
O mMC
E 0.1 m MSPAI
- J
0.001
rdb2048 sym_rd all
appu nonsym_rs all sym_r3_all

Figure 12. Fastest execution time achieved during the
preconditioner calculation.
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GMRES timing

1000
100
10
g 1 mMC

£ B MSPAI
= 0.1
0.01
0.001

rdb2048 sym_rd all
appu nonsym_r5_all sym_r3 all

Figure 13. Time required by the solver to find the solution for the
preconditioned system.
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Total time

1000
100
10
2 mMC
E - m MSPAI
- J
0.01
rdb2048 sym_rd4 all
appu nonsym_rs all sym r3 all

Figure 14. Total time = Preconditioner construction time + Solver
execution time.
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Low discrepancy (quasirandom) sequences

O  The quasirandom sequences are deterministic sequences constructed to be
as uniformly distributed as mathematically possible (and, as a consequence, to
ensure better convergence for the integration)

O  The uniformity is measured in terms of discrepancy which is defined in the
following way: For a sequence with N points in [0,1]s define

RN(J) = 1/N#{xn in J}-vol(J) for every J € [0,1]s
DN* = supE* |RN(J)|,
E* - the set of all rectangles with a vertex in zero.
O As-dimensional sequence is called quasirandom if
DN* < c(log N)s N-1
0O Koksma-Hlawka inequality (for integration):
[f] = V[f] DN*

e;g ,\{,[f] is the variation in the sense of Hardy-Kraus)

e5 9 Sozo
p “Aref fp"fhp arror ic O((loa Nle N-1)




PRNs and QRNs

SPRNG Sequence
4096 Points of SPRNG Sequence

x(+1)

F) P P O T
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(€ Discrepancy of real random numbers:
D*N = O(N-1/2 (log log N)-1/2)

({ Klaus F. Roth (Fields medal 1958) proved the following lower
bound for star discrepancy of N points in s dimensions:

D*N =O(N-1 (log N)(s-1)/2)

({ Sequences (indefinite length) and point sets have different
“best” discrepancies:

B Sequence: D*N =< O(N-1 (log N)s-1)
(( P'mmrat set D*N < O(N-1 (log N)s-2)




Most often used sequences (Halton Sequence)

(€ Let n be an integer presented in base p. The p-ary
radical inverse function is defined as

_ bo b1 | b

where p is prime and bi comes from .
n = by + b1p + ... + bmp™,

with0 ! bi<p

(Pp1(n), Ppo(n), ..., Pp(n))

(€ An s-dimensional Halton sequence is defined as:

with pl p2 ..., ps being relatively prime, and usually the first §
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Most often used sequences

(€ In our computations we have used scrambled modified
Halton sequence [Atanassov 2003]:

xn(i) = >j=0m imod (aj(i)kij+1 + bj(i),pi) pi—j-1

(scramblers bj(i), modifiers ki in [0, pi —1])

@ Barcstone
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Most often used sequences (Sobol)

o Sobol sequence (1967) {xn = (xn(1), xn(2), ..., Xn(s))}

o The j-th coordinate of the n-th point of s-dimensional Sobol
sequence xn = (xn(1), xn(2), ..., xn(s)) is generated through the
recursion:

xn(j) = b1v1(j) ® b2v2(j) ®... bwvw(j)

where vi(j) is i-direction number for dimension j, and & is bit-by-bit
exclusive-or operation (bi are the coefficients of representation of n in
base 2)

o How to determine vi(j) : for each dimension a different primitive
polynomial is chosen and its coefficients are used to define:
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Quasirandom Sequences and their scrambling

(€ Unfortunately, the coordinates of the quasirandom sequence
points in high dimensions show correlations. A possible solution
to this problem is the scrambling.

(€ The purpose of scrambling:

- To improve 2-D projections and the quality of quasirandom
sequences in general

- To provide practical method to obtain error estimates for QMC

- To provide simple and unified way to generate quasirandom
numbers for parallel computing environments

- To provide more choices of QRN sequences with better (often
optimal) quality to be used in QMC applications

@ Barcetona
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Scrambling techniques

(€ Scrambling was first proposed by Cranley and Patterson (1979) who took
lattice points and randomized them by adding random shifts to the
sequences. Later, Owen (1998, 2002, 2003) and Tezuka (2002)
independently developed two powerful scrambling methods through
permutations

(€ Although many other methods have been proposed, most of them are
modified or simplified Owen or Tezuka schemes (Braaten and Weller,
Atanassov, Matousek, Chi and Mascagni, Warnock, etc.)

(€ There are two basic scrambling methods:
- Randomized shifting
— Digital permutations
(Permuting the order of points within the sequence)

(€ The problem with Owen scrambling is its computational complexity

B rcelona
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Scrambling

(€ Digital permutations: Let (x(1)n, x(2)n, . . ., X(s)n) be any
quasirandom pointin [0, 1)s, and (z(1)n, z(2)n, . . ., z(sS)n)
IS its scrambled version. Suppose each x(j)n has a b-ary
representation x(j)n, =0. x(j)n1 x(j)n2 ... x(j)nK, ... with K
defining the number of digits to be scrambled. Then

z(j)n = o(x(j)n ), where o={P1, ..., PK} n @i, is a
uniformly chosen permutation of the digits {0,1,...,b-1}.

(€ Randomized shifting has the form
zn=xn +r(mod 1),

where xn is any quasirandom number in [0, 1)sand ris a
single s-dimensional pseudorandom number.
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Two-dimensional projection of Halton sequence and

scrambled Halton sequence

o Mote new toolbar buttons: data brushing 2 linked plots ‘.f/‘: E} Play video
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Two-dimensional projection of Halton sequence and scrambled Halton

sequence (dimension 8)

Halton | Scrambled Halton
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Two-dimensional projection of Halton sequence and scrambled Halton

sequence (dimension 99)

89 dimension
59 dimension
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Error estimate for QMC

(€ Scrambling provides a practical method to obtain
error estimates for QMC based by treating each
scrambled sequence as a different and independent
random sample from a family of randomly scrambled
quasirandom numbers, thus allowing standard
(Gaussian) confidence intervals to be considered.

(€ QMC error for Markov chain based problems:
ON (¢(Q")) = V(¢ ° T'-1). (D*N(Q))

where Q = {yi} is a sequence of vectors in [0,1)sT, Q' =
{wi} is a sequence of quasirandom walks generated

@ Q-using the magpina ', o
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MC vs QMC

Precision ep 0.5
0,16

0,14

0,12

o
=

Seconds
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Figure 15. MC and QMC preconditioners execution time

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion



MC vs QMC

Precision ep 0.1

0,25
0,2
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o
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Figure 16. MC and QMC preconditioners execution time
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MC vs QMC

Matrix QMC-Halton, eps=0.5 MC, eps=0.5 QMOC-Halton, eps=0.1 textb{MC, eps=(0.1
Appu (0. 135902 (.139417 1.62762 2.T8(41
besstmld 106,616 107.129 1159986 120,103
Nad 0.012513 (.013384 0.027767 (.025393
Rdb20048 (0.158109 (.197112 (. 17864 (L 170368
Sil0H16 (.0312071 (0.0299697 (). 436300 (.494 1460

Figure 17. MC and QMC solver times
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Further Improvements

Discarding elements of the matrix

MMCMCMI, matrix monsym_rl_all

0.04251
0.0400
0.03751
0.03501

03251

o o

runtime [sac|

0300
0.027T54

0.02501

0.0225

0.00 0.02 0.04 0.06 0.08

Entried drogped [5100]

Figure 3. Execution time of the preconditioner
computation.

matrix: nonsym r3 all drop % : 8.0, tal: 0.0625

I total runbirme

Runtime [sec)

1071+

G 107

&
L1
=

MCMCM|

method

Figure 2. Total time = preconditioner construction
time + solver execution time.
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Further Improvements

Preconditioner carmputatiaon, N=[512]

102 N MOMOM
. MSPA

[
=

runtime [sec)

10

ID1_2 P3_T stiffness  rdbi2048 sym_rh all norsym r3 all

Total time: preconditioner + solver
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Further Improvements

Runtime [sec]

107

107 4

107 4

Matbrix: sym_rb_all, drop: 0.0 %

== MCMCMI
—— M5PA

26

2'? 28 29 ESII:I
Number of processes

Figure 7. Execution time of the preconditioner
computation for varying number of processes.
Transition probabilities are computed by the mas-
ter process and broadcast to the workers.
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Figure 8. Execution time of the preconditioner
computation for varying number of processes with
transition probabilities not being broadcast.
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Further Work

(€ MC stochastic projection approach
({ GPU based implementations

(€ Further experiments and comparisons







Conclusions and Future Work

(€ MC and QMC provide good quality preconditioners

(€ Need to enhance the reuse of sub-chains in longer Markov
Chains

(€ quasi-Monte Carlo and MC deliver the same quality
preconditioners
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