
Making Reproducibility Indispensable:

Changing the Incentives that Drive Computational Science

Presented at
SPPEXA Workshop March 2019

Paris, France

Michael A. Heroux

Senior Scientist, Sandia National Laboratories
Director of Software Technology, US Exascale Computing Project

SPPEXA Workshop, Michael A. Heroux, Université de Versailles2

My Background

• 1998 – now: Staff member at Sandia National Labs

– Lead these projects:

• ECP SW Technology since Nov 2017.

• Trilinos: collection of scientific libraries – trilinos.github.io.

• Mantevo: “Miniapps” project for HPC co-design – mantevo.github.io

• IDEAS Productivity: Scientific Productivity and sustainability – ideas-productivity.org

• HPCG Benchmark: Complementary benchmark for Top 500 – hpcg-benchmark.org

• Better Scientific Software: Portal and content for productivity and sustainability – bssw.io

• SC18 Reproducibility Chair, SC19 special role

– Concurrent: Scientist in Residence, St. John’s University, MN USA

• 1988 – 1998: Staff member at Cray Research
– 88 – 93: Math libraries developer, sparse solvers, LAPACK, BLAS: LIBSCI

– 93 – 95: Application analyst, computational engineering group: FIDAP, Fluent, Star-CD.

– 95 – 98: Scalable systems applications specialist: Cray T3E “MPP”.

SPPEXA Workshop, Michael A. Heroux, Université de Versailles3

Outline

• Increasing focus on reproducibility.
•Reproducibility dynamics.
•Publications.

•Software quality.
• Community.

• Personal Productivity Commitment.

• Reproducibility as a Keystone Habit.

Reproducibility is essential4

SPPEXA Workshop, Michael A. Heroux, Université de Versailles5

Reproducibility

• NY Times highlights “problems”.

• Only one of many cited
examples.

• Computational science had been
spared this “spotlight”.

http://www.nytimes.com/2015/08/28/science/many-social-science-findings-not-as-strong-as-claimed-study-says.html?_r=0

SPPEXA Workshop, Michael A. Heroux, Université de Versailles6

10/19/18, 8(23 PM

The war over supercooled water

Page 1 of 12

https://physicstoday.scitation.org/do/10.1063/PT.6.1.20180822a/full/

� M
EN

U

Access provided by Sandia National Laboratories
 SIGN IN/REGISTER

HOME

BROWSE�

INFO�

RESOURCES�

JOBS

� SIGN
 UP FO

R ALERTS

NEXT �

� PREV

DOI:10.1063/PT.6.1.20180822a

22 Aug 2018 in Research & Technology

The w
ar over supercooled w

ater

How a hidden coding error fueled a seven-year dispute between two of condensed matter’s top theorists.

Ashley G. Sm
art

11COMMENTS

Most people would’ve seen little reason to quibble with David Chandler’s talk at the spring

2011 Statistical Mechanics Conference. Chandler, a chemist at the University of California,

Berkeley, was renowned for having cracked some of the thorniest problems in statistical

mechanics. He had lent his insights and his name to a widely used model of equilibrium

liquids, the Weeks-Chandler-Andersen theory. And he was a powerful and persuasive talker.

M
O

ST READFuture gravitational-wave de-

Future gravitational-wave de-

tectors aim to probe early

tectors aim to probe early

universe

universe
The life and work of Elmer

The life and work of Elmer

Samuel Imes

Samuel ImesAstrophysical high-energy

Astrophysical high-energy

neutrinos

neutrinos
Wanted: Non-Chinese

Wanted: Non-Chinese

rare-earth elements

rare-earth elements
Free-falling nanoparticle

Free-falling nanoparticle

helps to detect tiny forces

helps to detect tiny forces

Computational Science Example
• Behavior of pure water just above homogeneous

nucleation temperature (~ - 40 C/F).
• Debenedetti/Princeton (2009):

– 2 possible phases: High or low density.

• Chandler/Berkeley (2011):
– Only 1 phase: High density.

• No sharing of details across teams until 2016:
– Chandler in Nature: “LAMMPS codes used in refs 5 and 12

are standard and documented, with scripts freely available
upon request.”

– Debenedetti with colleague Palmer: ”Send us your code.”
– Received code after requests and appeal to Nature.

Source: https://physicstoday.scitation.org/do/10.1063/PT.6.1.20180822a/full/

SPPEXA Workshop, Michael A. Heroux, Université de Versailles7

10/19/18, 8(23 PM

The war over supercooled water

Page 1 of 12

https://physicstoday.scitation.org/do/10.1063/PT.6.1.20180822a/full/

� M
EN

U

Access provided by Sandia National Laboratories
 SIGN IN/REGISTER

HOME

BROWSE�

INFO�

RESOURCES�

JOBS

� SIGN
 UP FO

R ALERTS

NEXT �

� PREV

DOI:10.1063/PT.6.1.20180822a

22 Aug 2018 in Research & Technology

The w
ar over supercooled w

ater

How a hidden coding error fueled a seven-year dispute between two of condensed matter’s top theorists.

Ashley G. Sm
art

11COMMENTS

Most people would’ve seen little reason to quibble with David Chandler’s talk at the spring

2011 Statistical Mechanics Conference. Chandler, a chemist at the University of California,

Berkeley, was renowned for having cracked some of the thorniest problems in statistical

mechanics. He had lent his insights and his name to a widely used model of equilibrium

liquids, the Weeks-Chandler-Andersen theory. And he was a powerful and persuasive talker.

M
O

ST READFuture gravitational-wave de-

Future gravitational-wave de-

tectors aim to probe early

tectors aim to probe early

universe

universe
The life and work of Elmer

The life and work of Elmer

Samuel Imes

Samuel ImesAstrophysical high-energy

Astrophysical high-energy

neutrinos

neutrinos
Wanted: Non-Chinese

Wanted: Non-Chinese

rare-earth elements

rare-earth elements
Free-falling nanoparticle

Free-falling nanoparticle

helps to detect tiny forces

helps to detect tiny forces

Computational Science Example
• Palmer located bug/feature in Berkeley code.

• Used to speed up LAMMPS execution.

• Replaced with more standard approach.

• Obtained result similar to Debenedetti 2009.

• Resolution took 7 years.

For Palmer, the ordeal exemplifies the importance of transparency in scientific
research, an issue that has recently drawn heightened attention in the science
community. “One of the real travesties,” he says, is that “there’s no way you
could have reproduced [the Berkeley team’s] algorithm—the way they had
implemented their code—from reading their paper.” Presumably, he adds, “if
this had been disclosed, this saga might not have gone on for seven years.”

Source: https://physicstoday.scitation.org/do/10.1063/PT.6.1.20180822a/full/

Essential for affordable reproducibility

Better Productivity and Sustainability8

SPPEXA Workshop, Michael A. Heroux, Université de Versailles9

Tradeoffs: Better, faster, cheaper
• “Better, faster, cheaper: Pick two of the three.”

– Scenario: (Today)

You are behind in developing a sophisticated new model in your

software that you want to use for results in an upcoming paper.

– Which of these could be reasonable choices?

• Develop a simpler model for the paper.

• Set other work aside and spend more time on development.

• Ask for an extension on the paper deadline.

• Develop sophisticated model, but don’t test its correctness.

• Develop sophisticated model, but don’t document it or check it in.

SPPEXA Workshop, Michael A. Heroux, Université de Versailles10

Improved developer productivity
“Better, faster, cheaper: Pick all three.” – Near term.

Scenario: (6 months later)
After investing in developer productivity improvements,
you are on time in developing a sophisticated new model in
your software that you want to use for results in an
upcoming paper.

Invest in developer tools, processes, practices.

SPPEXA Workshop, Michael A. Heroux, Université de Versailles11

Improved software sustainability
“Better, faster, cheaper: Pick all three.” – Long term.

Scenario: (3 years later)
After investing in software sustainability improvements,
you are on time in developing several sophisticated new
models in your software that you want to use for results in
upcoming papers.

Invest in testing, documentation, integration for long-term
software usability.

SPPEXA Workshop, Michael A. Heroux, Université de Versailles12

Which of These Enhance Reproducibility?

• Code written by first-year, untrained grad student.

• Tuning for high performance.

• Dynamic parallelism of modern processors.

• Better software testing.

• Source code and versioning management.

• Investing in developer productivity.

• Investing in software sustainability.

Incentives Demand Investments, Enabled by Investments

• Reproducibility Req’mts
• SW Quality Requirements
• Community Building

Productivity &
Sustainability
Investments

Demand

Enable

Common statement: “I would love to do a better job on my software, but I need to:
• Get this paper submitted.
• Complete this project task.
• Do something my employer values more.

Goal: Change incentives to include value of better software, better science.

Addressing Confusion in Taxonomies

Reproducible vs Replicable14

SPPEXA Workshop, Michael A. Heroux, Université de Versailles15

SANDIA REPORT
SAND2018-11186
Unlimited Release
Printed October 2018

Toward a Compatible Reproducibility
Taxonomy for Computational and
Computing Sciences

Michael A. Heroux, Lorena A. Barba, Manish Parashar, Victoria Stodden and Michela
Taufer

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525.

SPPEXA Workshop, Michael A. Heroux, Université de Versailles16

14

2. TAXONOMIES FOR COMPUTATIONAL & COMPUTING SCIENCES
The most common reproducibility taxonomy for computational sciences is what we will call the
Claerbout taxonomy (Claerbout and Karrenbach, 1992; Buckheit and Donoho, 1995; Peng et al.,
2006). A relatively new taxonomy for computing sciences is due to a formal effort sponsored by
the Association for Computing Machinery (ACM), which we will call the ACM taxonomy
(Stodden et al., 2013). As described in Barba (2018), both taxonomies have roots in a lineage
that goes back to early discussions of scientific reproducibility. Claerbout refers back to
experimental sciences, while ACM looks for its roots in the metrology literature.

As shown in Table 1, both the Claerbout and the ACM taxonomies use the terms reproduce or
reproducible, and replicate or replicable. However, the meaning of the terms is swapped. In
other words, the definition of reproducible in Claerbout is essentially equivalent to the definition
of replicable in ACM, and the same for replicable in Claerbout and reproducible in ACM.

While different definitions of reproducibility terms are inevitable, and (we believe) difficult to
universally reconcile, we find the opposite definitions in computational and computing sciences
to be particularly confusing, and worth reconciling. Computational sciences and computing
sciences have major community overlap: many people belong to both communities.

Table 1: Definitions of Reproducible and Replicable
Table 1: Claerbout/Donoho/Peng (Claerbout) and ACM definitions of Reproducible and Replicable. Claerbout definitions are
prevalent in the computational science literature and have been used since the 1990s. The ACM definitions are used by ACM in
its Artifact Review and Badging effort and first appeared in February 2013.

Term Claerbout ACM

Reproducible Authors provide all
the necessary data
and the computer
codes to run the
analysis again, re-
creating the results.

(Different team, different experimental setup.)
The measurement can be obtained with stated
precision by a different team, a different
measuring system, in a different location on
multiple trials. For computational experiments,
this means that an independent group can obtain
the same result using artifacts which they develop
completely independently.

Replicable A new study arrives
at the same scientific
findings as a
previous study,
collecting new data
(with the same or
different methods)
and completes new
analyses.

(Different team, same experimental setup.) The
measurement can be obtained with stated
precision by a different team using the same
measurement procedure, the same measuring
system, under the same operating conditions, in
the same or a different location on multiple trials.
For computational experiments, this means that
an independent group can obtain the same result
using the author's own artifacts.

SPPEXA Workshop, Michael A. Heroux, Université de Versailles17

Publications18

SPPEXA Workshop, Michael A. Heroux, Université de Versailles19

ACM TOMS Replicated Computational Results (RCR)
• Submission: Optional RCR option.

• Standard reviewer assignment: Nothing changes.

• RCR reviewer assignment:
– Concurrent with standard reviews.
– As early as possible in review process.
– Known to and works with authors during the RCR process.

• RCR process:
– Multi-faceted approach, Bottom line: Trust the reviewer.

• Publication:
– Replicated Computational Results Designation.
– The RCR referee acknowledged.
– Review report appears with published manuscript.

SPPEXA Workshop, Michael A. Heroux, Université de Versailles20

RCR Process: Two Basic Approaches
1. Independent replication (3 options):

A. Transfer of, or pointer to, author’s software.
B. Guest account, access to author’s software.
C. Observation of authors replicating results.

Or (Not used with TOMS, but with SC)
2. Review of computational results artifacts:

– Results may be from an unavailable system.
– Leadership class computing system.
– In this situation:

• Careful documentation of the process.
• Software should have its own substantial V&V process.

TOMS:
• First RCR paper in TOMS

issue 41:3
– Editorial introduction.
– van Zee & van de Geijn,

BLIS paper.
– Referee report.

• Second: TOMS 42:1
– Hogg & Scott.

• Third: TOMS 42:4.
• More in the meantime.

TOMACS
• Similar.

SPPEXA Workshop, Michael A. Heroux, Université de Versailles21

Big Picture of ACM RCR
• Improve science.

– Quality of prose: Good.
– Quality of data: Poor.

• So bad now:
– Trust comes from seeing a “cloud”

of similar papers with similar results.
– Which could still be wrong (built on a common bad piece).
– Replicability: First step toward improvement.

• Engage a “dark portion” of the R&D community.
– Reviewers not among typical reviewer pool.
– Practitioners, users. Expert at use of Math SW.

Thank you for taking the time to consider our
paper for your journal.

XXX has agreed to undergo the RCR process
should the paper proceed far enough in the review
process to qualify. To make this easier we have
preserved the exact copy of the code used for
the results (including additional code for
generating detailed statistics that is not in the
library version of the code).

SPPEXA Workshop, Michael A. Heroux, Université de Versailles22

SC18/19 Reproducibility Initiative
• Two appendices:

–Artifact description (AD).
• Blue print for setting up your computational experiment.
• Makes it easier to rerun computations in future.
• AD appendix will be mandatory for SC19 paper submissions.

–Artifact Evaluation (AE).
• Targets ”boutique” environments.
• Improves trustworthiness when re-running hard, impossible.

• Details:
–https://collegeville.github.io/sc-reproducibility/

https://collegeville.github.io/sc-reproducibility/

SPPEXA Workshop, Michael A. Heroux, Université de Versailles23

Reproducibility and Supercomputing

Scenario:
You compute a “hero” calculation using 5M core-hours on
Mira and submit your results for publication. During the
review process, a referee questions the validity of your
results. What options are feasible:
- The reviewer re-runs your code on a laptop or cluster.
- The reviewer re-runs your code on Mira.
- You re-run your code on Mira.
- Your results are rejected.
- Your results are accepted, but with risk.

SPPEXA Workshop, Michael A. Heroux, Université de Versailles24

Example: HPCG Benchmark

•Exploit two properties:
–Spectral properties of CG:

• Eigenvalue clustering.
• CG convergence related to number of distinct eigenvalues.

–Operator symmetry:
• Compact Finite Difference operator is symmetric.
• Multigrid is symmetric.

SPPEXA Workshop, Michael A. Heroux, Université de Versailles25

Example: HPCG Benchmark
•Symmetry:

–For any linear operator A, xTAy = yTATx.
–If A symmetric A = AT, so xTAy = yTAx.
–And xTAy - yTAx = 0.

•HPCG computes the above expression for:
–User matrix and the preconditioner.
–Numerical detail: Need to scale by vector & matrix

norms.

SPPEXA Workshop, Michael A. Heroux, Université de Versailles26

Example: HPCG Benchmark
• Eigenvalue clustering:

– HPCG matrix is 27-point finite difference stencil.
• -1 off diagonals, diagonally dominant, zero Dirichlet BCs.
• Max diagonal value – 27.

– Idea: Temporarily replace diagonal values.
• For i=1:9 A(i,i) = (i+1)*1.0E6
• For i>9 A(i,i) = 1.0E6

• Questions:
– How many distinct diagonal values?
– How many unpreconditioned CG iterations?
– How many preconditioned CG iterations?

SPPEXA Workshop, Michael A. Heroux, Université de Versailles27

Sources for Artifact Evalution metrics
• Synthetic operators with known:

– Spectrum (Huge diagonals).
– Rank (by constructions).

• Invariant subspaces:
– Example: Positional/rotational invariance (structures).

• Conservation principles:
– Example: Flux through a finite volume.

• General:
– Pre-conditions, post-conditions, invariants.

Can you think of something for your problems?

SPPEXA Workshop, Michael A. Heroux, Université de Versailles28

Reproducibility and Publications

• These conferences expect artifact evaluation appendices
(most optionally):
– CGO, PPoPP, PACT, RTSS and SC.
– http://fursin.net/reproducibility.html

• ACM Replicated Computational Results (RCR).
– ACM TOMS, TOMACS.
– http://toms.acm.org/replicated-computational-results.cfm

• ACM Badging.
– https://www.acm.org/publications/policies/artifact-review-badging
– Used with SC technical program.

http://fursin.net/reproducibility.html
http://toms.acm.org/replicated-computational-results.cfm
https://www.acm.org/publications/policies/artifact-review-badging

Software Quality

30

Goal
Build a comprehensive,
coherent software stack
that enables application
developers to
productively write highly
parallel applications that
effectively target diverse
exascale architectures

ECP Software: Productive, sustainable ecosystem

Extend current technologies to exascale where possible

Perform R&D required for new approaches when necessary

Coordinate with and complement vendor efforts

Develop and deploy high-quality and robust software products

31

Challenges
Qualitative changes:
Massive concurrency;
Multi-scale, multi-
physics, data-driven
science; Ecosystem
integration

ECP software: Challenges

Billion way concurrency: Several novel compute nodes.

Coupled apps: Physics, scales, in situ data, more.

Data-driven: New software HPC environments, containers.

Ecosystem: Part of a large, complex, evolving SW environment.

32

Hardware and Integration
2.4

Project Management
2.1

Project Planning
and Management

2.1.1

Project Controls and Risk
Management

2.1.2

Information Technology
and Quality Management

2.1.5

Business Management
2.1.3

Procurement Management
2.1.4

Communications
and Outreach

2.1.6

Chemistry and Materials
Applications

2.2.1

Energy Applications
2.2.2

National Security
Applications

2.2.5

Earth and Space Science
Applications

2.2.3

Application Development
2.2

Software Technology
2.3

Programming Models
and Runtimes

2.3.1

Development Tools
2.3.2

Software Ecosystem
and Delivery

2.3.5

Mathematical Libraries
2.3.3

Data and Visualization
2.3.4

Data Analytics and
Optimization Applications

2.2.4

Co-Design
2.2.6

PathForward
2.4.1

Hardware Evaluation
2.4.2

Facility Resource
Utilization

2.4.5

Application Integration
at Facilities

2.4.3

Software Deployment
at Facilities

2.4.4

Training and Productivity
2.4.6

Exascale Computing Project
2.0

SPPEXA Workshop, Michael A. Heroux, Université de Versailles33

Extreme-Scale Scientific Software Stack – E4S
• E4S: A Spack-based distribution of ECP ST and

related and dependent software tested for
interoperability and portability to multiple
architectures.

• Provides from-source and four container versions.

• Provides distinction between SDK usability /
general quality / community and deployment /
testing goals

• Will leverage and enhance SDK interoperability
thrust

• Oct: E4S 0.1 - 24 full, 24 partial release products

• Jan: E4S 0.2 - 37 full, 10 partial release products

• Current primary focus: Facilities deployment

e4s.io
Lead: Sameer

Shende (U Oregon)

SPPEXA Workshop, Michael A. Heroux, Université de Versailles34

E4S Full Release and Installed Packages

• Adios
• Bolt
• Caliper
• Darshan
• Gasnet
• GEOPM
• GlobalArrays
• Gotcha
• HDF5
• HPCToolkit
• Hypre
• Jupyter
• Kokkos
• Legion

• Libquo
• Magma
• MFEM
• MPICH
• OpenMPI
• PAPI
• Papyrus
• Parallel

netCDF
• ParaView
• PETSc/TAO
• Program

Database
Toolkit (PDT)

• Qthreads
• Raja
• SCR
• Spack
• Strumpack
• Sundials
• SuperLU
• Swift/T
• SZ
• Tasmanian
• TAU
• Trilinos
• VTKm
• Umpire

• UnifyCR
• Veloc
• xSDK
• Zfp

Packages installed using Spack

SPPEXA Workshop, Michael A. Heroux, Université de Versailles35

ECP ST Software Release Goals
• Build All ST Products that are ready.

– Product readiness is part of success criteria.
– Number of releasable products increase

over time.

• SDKs will provide product suites.
– Similar products, interoperable.
– Consistent versions of dependencies.
– Math SDK (aka, xSDK) is first SDK.

• We build the whole tree, so any subtree
will be stable.
– spack install xsdk – Build entire math SDK.
– spack install sundials – Guaranteed to build

correctly.

SPPEXA Workshop, Michael A. Heroux, Université de Versailles36

E4S: Providing a Common Environment Using Containers

• Useful for:
– Testing

• Target platforms are well-defined and accessible
– Development
– Demonstration

• Already used for different tutorials, including CANDLE
– Deployment
– Achieving interoperability
– Creating Spack “recipes” and Spack Stacks

• Not a replacement for Spack-based build-from-source installations
– Near-term deployment primarily bare metal

• Docker, Shifter, Singularity, and Charliecloud are supported
– Different facilities support and are exploring different technologies

SPPEXA Workshop, Michael A. Heroux, Université de Versailles37

Software Development Kits
A Software Integration Strategy for CSE

• SDK: A collection of related software products (called packages) where
coordination across package teams will improve usability and practices and
foster community growth among teams that develop similar and
complementary capabilities. SDKs have the following attributes:

– Domain scope: Collection makes functional sense.
– Interaction model: How packages interact; compatible, complementary,

interoperable.
• Interfaces and common versions of 3rd party software.

– Community policies: Value statements; serve as criteria for membership.
– Community interaction: Communication between teams. Bridge culture.

Common vocabulary.
– Meta-infrastructure: Encapsulates, invokes build of all packages (Spack), shared

test suites.
– Coordinated plans: Inter-package planning. Does not replace autonomous

package planning.
– Community outreach: Coordinated, combined tutorials, documentation, best

practices.

• Unity in essentials, otherwise diversity.

SPPEXA Workshop, Michael A. Heroux, Université de Versailles38

ECP ST SDK Breakdown

SPPEXA Workshop, Michael A. Heroux, Université de Versailles39

SDK “Horizontal”
Grouping:

Key Quality
Improvement

Driver

Horizonal (vs Vertical) Coupling
– Common substrate
– Similar function and purpose

• e.g., compiler frameworks, math libraries
– Potential benefit from common Community Policies

• Best practices in software design and development and customer support
– Used together, but not in the long vertical dependency chain sense
– Support for (and design of) common interfaces

• Commonly an aspiration, not yet reality

PETSc Trilinos

SuperLU Version X SuperLU Version Y

Horizontal grouping:
• Assures X=Y.
• Protects against regressions.
• Transforms code coupling from

heroic effort to turnkey.

SPPEXA Workshop, Michael A. Heroux, Université de Versailles40

SW engineering
• Productivity tools.
• Models, processes.

Libraries
• Solvers, etc.
• Interoperable.

Frameworks & tools
• Doc generators.
• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
• Reacting flow, etc.
• Reusable.

xSDK functionality, Dec 2017

Tested on key machines at ALCF,
NERSC, OLCF, also Linux, Mac OS X

Multiphysics Application C

Application B
Notation: A B:
A can use B to provide
functionality on behalf of A

https://xsdk.info

MAGMA

Alquimia hypre

Trilinos

PETSc

SuperLU More
contributed

libraries

PFLOTRAN

More
domain

components

MFEM

SUNDIALS
HDF5

BLAS

More
external
software

Application A

xSDK-0.3.0: Dec 2017

Fall 2018:
Working toward
release xSDK-0.4.0

11 more packages
working toward inclusion:

• DOE: Albany, AMReX,
DTK, Omega_h,
PLASMA, PUMI,
STRUMPACK,
Tasmanian

• Broader community:

deal.II, PHIST, SLEPc

July 2018:
Revisions of xSDK
Community Policies

https://xsdk.info/policies

SPPEXA Workshop, Michael A. Heroux, Université de Versailles41

SW engineering
• Productivity tools.
• Models, processes.

Libraries
• Solvers, etc.
• Interoperable.

Frameworks & tools
• Doc generators.
• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
• Reacting flow, etc.
• Reusable.

xSDK functionality, Dec 2018

Tested on key machines at ALCF,
NERSC, OLCF, also Linux, Mac OS X

xSDK Version 0.4.0: December 2018

Multiphysics Application C

Application B

Impact: Improved code quality,
usability, access, sustainability

Foundation for work on
performance portability, deeper

levels of package interoperability

Each xSDK member package uses or
can be used with one or more xSDK
packages, and the connecting interface
is regularly tested for regressions.

https://xsdk.info

Application A

Alquimia hypre

Trilinos

PETSc

SuperLU More
libraries

PFLOTRAN

More domain
components

MFEM

SUNDIALS

HDF5

BLAS

More
external
software

STRUMPACK

SLEPc
AMReX

PUMI

Omega_h

DTK Tasmanian

PHIST

deal.II

PLASMA

December 2018
• 17 math libraries
• 2 domain

components
• 16 mandatory

xSDK community
policies

• Spack xSDK
installer

MAGMA

SPPEXA Workshop, Michael A. Heroux, Université de Versailles42

ECP ST SDK community policies: Important team building,
quality improvement, membership criteria.

xSDK compatible package: Must satisfy mandatory xSDK policies:
M1. Support xSDK community GNU Autoconf or CMake options.
M2. Provide a comprehensive test suite.
M3. Employ user-provided MPI communicator.
M4. Give best effort at portability to key architectures.
M5. Provide a documented, reliable way to contact the development team.
…

Recommended policies: encouraged,
not required:
R1. Have a public repository.
R2. Possible to run test suite under valgrind in order

to test for memory corruption issues.
R3. Adopt and document consistent system for error

conditions/exceptions.
R4. Free all system resources it has acquired as soon

as they are no longer needed.
R5. Provide a mechanism to export ordered list of

library dependencies.

xSDK member package: An xSDK-compatible
package, that uses or can be used by another
package in the xSDK, and the connecting
interface is regularly tested for regressions.

https://xsdk.info/policies
Prior to defining and complying with these policies, a user could
not correctly, much less easily, build hypre, PETSc, SuperLU
and Trilinos in a single executable: a basic requirement for some
ECP app multi-scale/multi-physics efforts.

Initially the xSDK team did not have
sufficient common understanding to
jointly define community policies.

SDK Community Policy Strategy

• Review and revise xSDK community policies and categorize
• Generally applicable
• In what context the policy is applicable

• Allow each SDK latitude in customizing appropriate
community policies

• Establish baseline policies in FY19 Q2, continually refine

https://xsdk.info/policies

SPPEXA Workshop, Michael A. Heroux, Université de Versailles43

SDK Summary

• New Effort: Started in April, fully established in August.

• Extending the SDK approach to all ECP ST domains.
– SDKs create a horizontal coupling of software products, teams.

– Create opportunities for better, faster, cheaper – pick all three.

• First concrete effort: Spack target to build all packages in an SDK.
– Decide on good groupings.

– Not necessarily trivial: Version compatibility issues. Coordination of common
dependencies.

• SDKs will help reduce complexity of delivery:
– Hierarchical build targets.

– Distribution of software integration responsibilities.

• Longer term:
– Establish community policies, enhance best practices sharing.

44

ECP-RPT-ST-0001-2019–Public

ECP Software Technology Capability Assessment Report–Public

Michael A. Heroux, Director ECP ST

Jonathan Carter, Deputy Director ECP ST

Rajeev Thakur, Programming Models & Runtimes Lead

Je↵rey S. Vetter, Development Tools Lead

Lois Curfman McInnes, Mathematical Libraries Lead

James Ahrens, Data & Visualization Lead

J. Robert Neely, Software Ecosystem & Delivery Lead

February 1, 2019

• Three document elements:
1. Executive summary – Public content.
2. Project Description - Public content.

• E4S, SDKs, Delivery strategy, new projects.
• Technical areas overview.
• Deliverables: Products, Standards committees,

contributions to external products.
• Project two-pages: 55 with description, activities, challenges,

next steps.
3. Appendix – ECP/Stakeholder content.

• Project management.
• Impact goals/metrics framework.
• Gaps and Overlaps.
• ASC-ASCR leverage tables.

• LaTeX, separate contributors, easily updated.
• 225 pages (196 public), update twice a year.

ECP Software Technology Capability Assessment Report
(Version 1.5 February 1, 2019)

V 1.0 https://www.exascaleproject.org

V 1.5 https://github.com/E4S-Project/ECP-ST-CAR-PUBLIC/blob/master/ECP-ST-CAR.pdf

https://www.exascaleproject.org/
https://github.com/E4S-Project/ECP-ST-CAR-PUBLIC/blob/master/ECP-ST-CAR.pdf

Community

SPPEXA Workshop, Michael A. Heroux, Université de Versailles46

Interoperable Design of Extreme-scale
Application Software (IDEAS)

Motivation
Enable increased scientific productivity, realizing the potential of
extreme-scale computing, through a new interdisciplinary and agile
approach to the scientific software ecosystem.

Objectives
Address confluence of trends in hardware and

increasing demands for predictive multiscale,
multiphysics simulations.

Respond to trend of continuous refactoring with
efficient agile software engineering
methodologies and improved software design.

Approach
ASCR/BER partnership ensures delivery of both crosscutting methodologies and

metrics with impact on real application and programs.
Interdisciplinary multi-lab team (ANL, LANL, LBNL, LLNL, ORNL, PNNL, SNL)

ASCR Co-Leads: Mike Heroux (SNL) and Lois Curfman McInnes (ANL)
BER Lead: David Moulton (LANL)

Integration and synergistic advances in three communities deliver scientific
productivity; outreach establishes a new holistic perspective for the broader
scientific community.

Impact on Applications & Programs
Terrestrial ecosystem use cases tie IDEAS to modeling
and simulation goals in two Science Focus Area (SFA)
programs and both Next Generation Ecosystem
Experiment (NGEE) programs in DOE Biologic and
Environmental Research (BER).

Software
Productivity for
Extreme-scale

Science
Methodologies

for Software
Productivity

Use Cases:
Terrestrial
Modeling

Extreme-Scale
Scientific Software
Development Kit

(xSDK)

www.ideas-productivity.org

IDEAS history
DOE ASCR/BER
partnership began in
Sept 2014

Program Managers:
• Paul Bayer, David Lesmes

(BER)
• Thomas Ndousse-Fetter

(ASCR)

First-of-a-kind
project: qualitatively
new approach based
on making productivity
and sustainability the
explicit and primary
principles for guiding
our decisions and
efforts.

https://bssw.io
Collaborative content development on
general topics topics related to
developer productivity and software
sustainability for CSE

We want and need contributions from
the community … Join us!

https://bssw.io/

SPPEXA Workshop, Michael A. Heroux, Université de Versailles48

BSSw site history … And an invitation: Join us!

• BSSw site launched at SC17
– BOF on Software Engineering and Reuse in Computational Science and Engineering

• https://swe-cse.github.io/2017-11-sc17-bof

• Seeking contributions from US and international CSE community
– Researchers, practitioners, and stakeholders from national laboratories, academic

institutions, and industry … share your resources, experiences, etc.

• Over time: Collaborate to build the site to a vibrant community resource
– Content and editorial processes provided by volunteers throughout the CSE community
– We need your contributions!

Initiative of the IDEAS Software Productivity Project
• Support from DOE Office of Advanced Scientific Computing Research,

DOE Exascale Computing Project
• Thank you to DOE program mangers Thomas Ndousse-Fetter, Paul Bayer,

and David Lesmes for encouragement and support

https://swe-cse.github.io/2017-11-sc17-bof/
https://ideas-productivity.org/

SPPEXA Workshop, Michael A. Heroux, Université de Versailles49

Promoting collaborative content
creation through GitHub backend

Contribute! Share your insights on CSE software practices and processes:
• https://github.com/betterscientificsoftware/betterscientificsoftware.github.io/blob/master/README.md
• Or search “github betterscientificsoftware”

BSSw Software Platform
Component
Technology

Backend Frontend

Google Docs GitHub Ruby on Rails
Location Google Drive betterscientificsoftware

GitHub organization https://bssw.io

Purpose
• Rapid collaborative content

development
• Multi-user typing, suggest

edits, comments

• Content creation, refinement,
management (from Google Drive)

• Content packaging for use with
bssw.io

• User-facing portal
• Polished backend content
• Blogs
• Mailing lists

Contributors Community subject matter
experts

Community subject matter experts,
BSSw staff

BSSw staff. Web development
experts

Consumers BSSw GitHub Backend BSSw Frontend CSE community

Content Notes Content migrates to GitHub
after it stabilizes

Content managed in git repos,
markdown

Content from Backend

https://github.com/betterscientificsoftware/betterscientificsoftware.github.io/blob/master/README.md
https://bssw.io/

SPPEXA Workshop, Michael A. Heroux, Université de Versailles50

Resource topics

Better Planning:
• Requirements
• Design
• Software

interoperability

Better Reliability:
• Testing
• Continuous integration testing
• Reproducibility
• Debugging

Better Skills:
• Personal productivity and sustainability
• Online learning

Better Performance:
• High-performance computing
• Performance at LCFs
• Performance portability

Better Development:
• Documentation
• Version control
• Configuration and builds
• Deployment
• Issue tracking
• Refactoring
• Software engineering
• Development tools

Better Collaboration:
• Licensing
• Strategies for more effective

teams
• Funding sources and programs
• Projects and organizations
• Software publishing and citation
• Discussion forums, Q&A sites

Software
Productivity &
Sustainability

CollaborationDevelopment
Reliability

Planning
Performance

Skills

Site content spans a broad range of topics.

SPPEXA Workshop, Michael A. Heroux, Université de Versailles51

Resource examples
Curated links: A brief article that highlights other
web-based articles or content. Your article should describe
why the CSE community might find value.

https://bssw.io/resources/an-introduction-to-software-licensing

https://bssw.io/resources/planning-for-better-software-psip-tools

https://bssw.io/resources/an-introduction-to-software-licensing
https://bssw.io/resources/planning-for-better-software-psip-tools

SPPEXA Workshop, Michael A. Heroux, Université de Versailles52

BSSw blog articles

Contributor Tom Evans, ORNL

SPPEXA Workshop, Michael A. Heroux, Université de Versailles53

Community landing
pages

SPPEXA Workshop, Michael A. Heroux, Université de Versailles54

Latest Addition:
CMS

• MolSSI (VA-Tech)

• Community Page for
Computational Molecular Science.

SPPEXA Workshop, Michael A. Heroux, Université de Versailles56

Sandia SW Engineering and Research (SEAR) Department
• New department focused on making CSE Research SW better:

– Focus on scientific & engineering research software.
– Improve developer productivity and software sustainability.
– Bring a critical mass of existing staff (but not necessarily all) into a department.
– Attract new talent by making SW Eng & Research first-class citizen.
– Build a community presence visible to DOE and external community.
– Build on Sandia’s native engineering culture.

• Three primary department workflows:
– Research: Participate in research community to understand and create new

knowledge for improving CSE research software.
– Develop: Identify, cultivate SW best practices prioritized for CSE research

software development (part of SEMS scope).
– Deploy: Provide effective SW tools and environments adapted to CSE research

software teams (part of SEMS scope).

Re
se

ar
ch

SEAR Department Workflows

• Collaborate with SW
research community.
• Form & answer research

questions.
• Create new knowledge.
• Address high priority

research software needs.

De
ve

lo
p

• Collaborate with SW
development community.
• Form and answer design

questions.
• Create new tools, workflows.
• Address research SW

development needs.

De
pl

oy

• Collaborate with SW user
community.
• Form & answer tools,

platforms questions.
• Address research SW

support needs.

Re
se

ar
ch

Cross-informed requirements, analysis, design
De

ve
lo

p

De
pl

oy

Create new knowledge to assist
develop/deploy activities

Keeps research efforts grounded and
deploy efforts improving

Critical develop/deploy needs
drive research priorities

Re
se

ar
ch

Types of workflows (not necessarily people)
De

ve
lo

p

De
pl

oy

Research Staff Work Profile

Development Staff Work Profile

Deployment Staff Work Profile

Why First-Class SW Focus now: The “No CS” Scenario
Scenario: Suppose our research centers had no formally trained computer scientists and CS
work had to be done by people who learned it on their own, or just happened to study a bit
of CS as part of their other formal training. This situation is undesirable in three ways:

1. We have non-experts doing CS work, making them less available in their expertise.
2. CS work takes a long time to complete compared to other work.
3. We get suboptimal results and pay high ongoing maintenance cost.

Replace ”CS” with “Software” in this scenario and the situation describes computational
science and engineering (CSE) software today.

Why focus on software expertise now:
• The role of software has become central to much of our work and the knowledge base is

too sophisticated to rely only on non-experts.
• CSE success depends on producing high-quality, sustainable software products.
• Investing in software as a first class pursuit improves the whole CSE ecosystem.

SPPEXA Workshop, Michael A. Heroux, Université de Versailles61

Applying Social Science to Software Teams
• Reed Milewicz – my postdoc.

• Elaine Raybourn – Sandia social
scientist recruited to my team.

• New scientific tools to study and
improve developer productivity,
software sustainability.

• Correlation: Happiness and
connectedness.

• Next: Design experiments to
detect cause and effect.

Talk to Me: A Case Study on Coordinating

Expertise in Large-Scale Scientific Software

Projects
Reed Milewicz and Elaine M. Raybourn

Sandia National Laboratories, 1611 Innovation Pkwy SE, Albuquerque, New Mexico 87123

Abstract—
Large-scale collaborative scientific software projects

require m
ore knowledge than

any
one person

typically
possesses.

This m
akes

coordination
and

com
m

unication
of knowledge

and

expertise
a

key
factor

in
creating

and
safeguarding

software

quality,
without

which
we

cannot
have

sustainable
software.

However, as
researchers

attem
pt

to
scale

up
the

production
of

software,
they

are
confronted

by
problem

s
of

awareness
and

understanding. This
presents

an
opportunity

to
develop

better

practices
and

tools
that

directly
address

these
challenges.

To

that end, we conducted
a

case study
of developers of the Trilinos

project. W
e

surveyed
the

software
developm

ent
challenges

ad-

dressed
and

show
how

those
problem

s are
connected

with
what

they
know

and
how

they
com

m
unicate. Based

on
these

data, we

provide
a

series
of practicable

recom
m

endations, and
outline

a

path
forward

for
future

research.I. INTRODUCTION

Large-scale scientific software projects are among the most

knowledge-intensive undertakings, consisting of extremely di-

verse communities of practice and inquiry. For example, a

climate modeling application can consist of numerous codes

for modeling the atmosphere and the ocean, each of which is

written by a distinct research team. The effective realization of

such an application in an high-performance computing (HPC)

environment relies heavily upon people with backgrounds in

computational science and software engineering. The orches-

tration of that talent demands disciplined project management

and communication with stakeholders. Thousands of person-

years of labor are poured into the software development over

the course of decades.

Given the long lifespan and criticality of these projects,

sustainability has been a focal point of research in recent

years. By sustainability, we mean the ability of the software

to continue to function as intended in the future, which is

necessary for the reliability and reproducibility of research [1].

Sustainability is a multi-faceted challenge that encompasses

both social and technical aspects of software development.

In this work, we focus on the social aspect: the creation,

communication, and use of knowledge integral to the scien-

tific software development process. Large scientific software

projects require diverse forms of expertise, bringing together

Sandia National Laboratories is a multimission laboratory managed and

operated by National Technology & Engineering Solutions of Sandia, LLC,

a wholly owned subsidiary of Honeywell International Inc., for the U.S.

Department of Energy’s National Nuclear Security Administration under

contract de-na0003525.

people of different backgrounds and perspectives; to have

success, there must be close, effective interaction among those

parties [2]. Unfortunately, as we attempt to scale up these

projects, we are confronted by barriers – logistical, technical,

and cultural – that make it hard for people to share and apply

what they know. These challenges increase both the cost and

difficulty of software development and maintenance which

ultimately threatens sustainability.

From a software engineering perspective, more work is

needed to create better tools and methodologies to manage

and maintain that software development knowledge. However,

as Dennehy and Conboy observe, the culture and context

of a software project are “critical determinants of software

development success” and that “a method, practice, or tool

cannot be studied in isolation” [3]. For these reasons, we offer

a survey and study of knowledge management practices within

the Trilinos project, a keystone scientific software library at

Sandia National Laboratories [4]. In order to identify targets

for intervention, we model how knowledge is created and,

shared and its relationship to common software development

challenges.A. Motivating Example

Robust public investment into next-generation supercom-

puters is vital to the scientific enterprise. At the same time,

the enormous sums of money that must be spent to construct

and maintain these tools make it incumbent on their users to

be accountable to the taxpayers. For this reason, government

agencies stipulate rigorous requirements that must be met both

by the machine and the software that it runs; a supercomputer

must provide sufficient capabilities and the software must be

able to fully utilize them. In the acceptance testing phase of

supercomputer acquisition and software utility, participating

research organizations put forward representative codes to be

run on a novel architecture, and code performance is then

compared against the capabilities advertised by the vendor.

In the past year, the government requirements were tested

when an well-respected application powered by Trilinos strug-

gled to scale beyond 2 17
Message Passing Interface (MPI)

processes during an acceptance phase, resulting in a nearly

30% drop in performance on the target architecture. Al-

though all other applications passed the acceptance test and

the contract was completed successfully, the issue flagged a

potential “time bomb” for numerous applications and had to

ar
Xi

v:
18

09
.0

63
17

v1
 [

cs
.S

E]
 1

7
Se

p
20

18

Source: https://arxiv.org/pdf/1809.06317.pdf

Calling out the best in team members

Personal Expectations62

SPPEXA Workshop, Michael A. Heroux, Université de Versailles63

A Few Concrete Recommendations

• GitHub stats: Easy to find who made the most commits.

– Some people: Pride in their high ranking.

• Instead, be the person who ranks high in these ways:

– Writes up requirements, analysis and design, even if simple.

– Writes good GitHub issues, tracks their progress to completion.

– Comments on, tests and accepts pull requests.

– Provide good wiki, gh-pages content, responses to user issues.

63

Show me the person making the most commits on an undisciplined software
project and I will show you the person who is injecting the most technical debt.

(Personal) Productivity++ Initiative
Ask: Is My Work _______ ?

https://github.com/trilinos/Trilinos/wiki/Productivity---Initiative
64

https://github.com/trilinos/Trilinos/wiki/Productivity---Initiative

Reproducibility: A keystone habit65

SPPEXA Workshop, Michael A. Heroux, Université de Versailles66

Alcoa and Worker Safety (Duhigg)

• Year: 1987

• Investors concerned about Alcoa.

• Paul O’Neill – Selected Alcoa CEO, not well known.

• First statement: "I want to talk to you about worker safety.”

• Investors panicked. But …

• Executed top-to-bottom safety focus.

• 10X injury drop, 5X revenue growth.
"I knew I had to transform Alcoa. But you can't order people to change. So I
decided I was going to start by focusing on one thing. If I could start disrupting the
habits around one thing, it would spread throughout the entire company.”

- Paul O’Neill

SPPEXA Workshop, Michael A. Heroux, Université de Versailles67

Reproducibility and Computational Science
• Aluminum workers:

– 1500 degree heat, dangerous machines.
– Safety is key.

• Reproducibility: Key for computational science.
• Can we make reproducibility requirements the keystone habit?
• Experiment:

– 2020 Sandia LDRD projects: All computational results must be reproducible.
– Drives rigor, innovation: provenance, tools, practices, communication.
– Engages Sandia Technical Library.

• Anticipated:
– Holistic focus on doing the right things.
– Strong incentive to do things right.

SPPEXA Workshop, Michael A. Heroux, Université de Versailles68

Making Reproducibility Indispensable

• We see heightened focus on:
– Workflows.
– Reproducibility requirements.
– Software quality requirements.
– Community Incentives.

• We have improved tools, practices, processes.
• Can we expect that all published computational

results will be reproducible?
• Let’s make it so.

