
Correctness Analysis for One-Sided Communication in MUST

Prof. Dr. Matthias S. Müller (mueller@itc.rwth-aachen.de)
Joachim Protze (protze@itc.rwth-aachen.de)
Simon Schwitanski (simon.schwitanski@rwth-aachen.de)



Correctness Analysis for One-Sided Communication in MUST
Prof. Matthias S. Müller

2

Motivation

• Many PGAS implementations base on a one-sided communication model

• One-sided communication is prone to data race

• What is necessary to analyze a PGAS application for data race?



Correctness Analysis for One-Sided Communication in MUST
Prof. Matthias S. Müller

3

Data race classes in PGAS

One-Sided
Data Races

Process-Local Across 
Processes

Local Access
and API calls

API calls
only

Local Access
and API calls

API calls
only

Memory access 
tracking necessary

Tracking of API 
calls sufficient



Correctness Analysis for One-Sided Communication in MUST
Prof. Matthias S. Müller

4

Example for a data race in MPI one-sided

Process A

MPI_Barrier

MPI_Win_lock(B,…)
buf = 42
MPI_Put(&buf, B, X,…)
MPI_Win_unlock(B,…)

MPI_Barrier

Process B

window location X
MPI_Barrier

print(X,…)

MPI_Barrier

Track process 
synchronization

Track memory 
synchronization

Track memory 
accesses



Correctness Analysis for One-Sided Communication in MUST
Prof. Matthias S. Müller

5

Formal analysis

• Identify interval of origin operation
• Identify interval of target operation

Process A

MPI_Barrier

MPI_Win_lock(B,…)
buf = 42
MPI_Put(&buf, B, X,…)
MPI_Win_unlock(B,…)

MPI_Barrier

Process B

window location X
MPI_Barrier

print(X)

MPI_Barrier

origin
operation

hb

hb

target
operation



Correctness Analysis for One-Sided Communication in MUST
Prof. Matthias S. Müller

6

Technology used for implementation: MUST + ThreadSanitizer

• MUST provides:
- API function tracking
- Communication and cross-process analysis

- MPI runtime correctness checking framework

• ThreadSanitizer provides:
- Memory access tracking
- Analysis of conflicting memory accesses

- Data race detection tool delivered with LLVM/GNU compilers



Correctness Analysis for One-Sided Communication in MUST
Prof. Matthias S. Müller

7

MUST Analysis stages
• Local memory access traced by TSan

• RMA access information propagated to 
target process

• Tool thread at target process reports memory 
access to TSan

0

2

1

3

0

T0

T2

T1

T3

• Tool thread enables communication 
between application processes
Ø Guarantee of progress in 

communication



Correctness Analysis for One-Sided Communication in MUST
Prof. Matthias S. Müller

8

Tool Architecture

Tool Thread

ThreadSanitizer
Interface

Target
Checks

Origin
Checks

Window
Tracking

RMA Call
Tracking

Vector
Clock

R
em

ote Tool Threads

Application Thread

AnnotationsAnnotations

Origin

Operations

Target

Operations

Window
Calls

Local
RMA Calls

Remote
RMA Calls

MPI
Vector Clocks

Synchronization
Information



Correctness Analysis for One-Sided Communication in MUST
Prof. Matthias S. Müller

9

Example: Data race detection for XMP

XMPT (in MUST):

- Fork / join, barrier
- Async communication
- Coarray access
- XMP communication

ThreadSanitizer:

- Happened-before
- POSIX threads
- POSIX threads
- Happened-before

ThreadSanitizer:

- Report of data races
- Report of dead locks
- Synchronization issues

Attributed to POSIX threads

XMPT (in MUST):

- Report of data races
- Report of dead locks
- Synchronization issues

Attributed to XMP regions

Transformation

Transformation

Analysis



Correctness Analysis for One-Sided Communication in MUST
Prof. Matthias S. Müller

10

Applicability for XMP Coarray

• XMP Coarray do not allow local Coarray access beyond API usage
- No conflict of API and non-API memory access possible
- Full memory access tracking not necessary

• Analysis based on:
- Tracking API memory accesses
- Tracking API synchronization information

• Information is provided by the XMPT interface
- Callbacks for coarray memory access
- Callbacks for XMP synchronization



Correctness Analysis for One-Sided Communication in MUST
Prof. Matthias S. Müller

11

Summary and Conclusion

• Technologies developed for runtime correctness checking of MPI one 
sided communication can be applied to PGAS languages

• Current prototype implementation still has some significant disadvantages:
- False positives in case of polling in unified memory model 

(benign data races) 
- slow-down 5-20x for logging & analysis of memory access

• XMP language specifications allow for low overhead run time checking.
IMHO this is an important design point of a parallel programming 
paradigm.

• More information, including a formal model: 
Master Thesis, Simon Schwitanski “On-the-Fly Data Race Detection in 
MPI One-Sided Communication” 



Thank you for your attention.

Acknowledgement:
Most of the work was implemented by Simon Schwitanski as part of his master thesis.


