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Motivation

• Many PGAS implementations base on a one-sided communication model

• One-sided communication is prone to data race

• What is necessary to analyze a PGAS application for data race?
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Data race classes in PGAS

One-Sided
Data Races

Process-Local Across 
Processes

Local Access
and API calls

API calls
only

Local Access
and API calls

API calls
only

Memory access 
tracking necessary

Tracking of API 
calls sufficient
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Example for a data race in MPI one-sided

Process A

MPI_Barrier

MPI_Win_lock(B,…)
buf = 42
MPI_Put(&buf, B, X,…)
MPI_Win_unlock(B,…)

MPI_Barrier

Process B

window location X
MPI_Barrier

print(X,…)

MPI_Barrier

Track process 
synchronization

Track memory 
synchronization

Track memory 
accesses
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Formal analysis

• Identify interval of origin operation
• Identify interval of target operation

Process A

MPI_Barrier

MPI_Win_lock(B,…)
buf = 42
MPI_Put(&buf, B, X,…)
MPI_Win_unlock(B,…)

MPI_Barrier

Process B

window location X
MPI_Barrier

print(X)

MPI_Barrier

origin
operation

hb

hb

target
operation
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Technology used for implementation: MUST + ThreadSanitizer

• MUST provides:
- API function tracking
- Communication and cross-process analysis

- MPI runtime correctness checking framework

• ThreadSanitizer provides:
- Memory access tracking
- Analysis of conflicting memory accesses

- Data race detection tool delivered with LLVM/GNU compilers
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MUST Analysis stages
• Local memory access traced by TSan

• RMA access information propagated to 
target process

• Tool thread at target process reports memory 
access to TSan

0
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• Tool thread enables communication 
between application processes
Ø Guarantee of progress in 

communication
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Tool Architecture

Tool Thread

ThreadSanitizer
Interface

Target
Checks

Origin
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Window
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Tracking
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Example: Data race detection for XMP

XMPT (in MUST):

- Fork / join, barrier
- Async communication
- Coarray access
- XMP communication

ThreadSanitizer:

- Happened-before
- POSIX threads
- POSIX threads
- Happened-before

ThreadSanitizer:

- Report of data races
- Report of dead locks
- Synchronization issues

Attributed to POSIX threads

XMPT (in MUST):

- Report of data races
- Report of dead locks
- Synchronization issues

Attributed to XMP regions

Transformation

Transformation

Analysis
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Applicability for XMP Coarray

• XMP Coarray do not allow local Coarray access beyond API usage
- No conflict of API and non-API memory access possible
- Full memory access tracking not necessary

• Analysis based on:
- Tracking API memory accesses
- Tracking API synchronization information

• Information is provided by the XMPT interface
- Callbacks for coarray memory access
- Callbacks for XMP synchronization
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Summary and Conclusion

• Technologies developed for runtime correctness checking of MPI one 
sided communication can be applied to PGAS languages

• Current prototype implementation still has some significant disadvantages:
- False positives in case of polling in unified memory model 

(benign data races) 
- slow-down 5-20x for logging & analysis of memory access

• XMP language specifications allow for low overhead run time checking.
IMHO this is an important design point of a parallel programming 
paradigm.

• More information, including a formal model: 
Master Thesis, Simon Schwitanski “On-the-Fly Data Race Detection in 
MPI One-Sided Communication” 



Thank you for your attention.
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