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Consortium
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• MYX builds on successful preliminary work and collaboration:
- FP3C: French-Japanese collaboration on YML and XMP for over 10 years
- JST-CREST: Japanese Exascale research program supporting XMP
- MUST: scalable correctness checking tool for MPI (and OpenMP)
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Research Challenges and Project Results
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• The more parallelism expressed, the higher the chance of errors being 
made

• Time of programming error search and fix: productivity loss!
- Automatic correctness checking may be used to avoid that

• MYX objectives are
- enable productivity improvements by means of scalable correctness checking
- of YML- and XMP-programs

§ XMP: PGAS, with both 
global-view and local-view

§ YML: graph of components 
language

- guide the development of future 
programming models
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Do we need a safety need in HPC?

Source: David Madison, gettyimages
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Challenges in runtime correctness analysis for parallel programming

• Point-to-point communication
- Message matching needs distributed information (send+recv)

• Collective communication
- Scalability of collective communication 

• One-sided communication
- Analysis of data races needs VC in distributed communication
- No scalable solution yet

• Multi-paradigm parallelism (MPI+X / XMP+X)
- Analysis of conflicting, concurrent communication / API calls
- Concrete message matching in MT is undecidable just by observation
- Data races with memory access in base language
- Potential conflict with parallelism in base languages
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Approach taken in MYX for Correctness Checking
• Automatic runtime correctness checking avoids the state explosion problem of 

model checking

• MUST: scalable correctness checking
of MPI, OpenMP and hybrid programs
- PnMPI used to intercept MPI calls

• Current use case example for MPI
- MPI lacks type safety in the functions to send and receive messages
- This may lead to invalid data, if receiver expects different data from what sender sent
- Runtime analysis can find actual and potential instances of this problem
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Distributed Agent-based Runtime Correctness Analysis

n Correctness analysis is done by specialized agents
n Locally whenever applicable
n Distributed for scalability
n Centralized only for global knowledge
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Challenge I: Multi-Paradigm Programming
Mixing YMP and XMP
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Correctness checking for YML+XMP programs
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Execute YML task under control
of MUST

MUST analysis of YML tasks
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TASK 6

TASK 7

TASK 2
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TASK 4

YML provides a workflow programming 
environment and high level graph 
description language called YvetteML
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New interface in MUST intended to dynamically change output
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YML+XMP+MUST execution by Miwako Tsuji
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MPI_Pcontrol interface for MUST

• Initial idea: provide a way for YML to specify new output file for each task
- Multiple tasks in a single “program” execution
ØNew file for each task

• Technical challenge: ensure that analysis result goes into the right file
ØMPI_Pcontrol call is “collective” for the application

• Semantical benefit: Allows to perform additional analysis
Ø (Non-blocking) communication should not be open across this point

• Future work: what additional parallelism assertions can we define?
• Assert parallel barrier
• Assert no open communication
• Assert no parallel handle



Challenge: One sided communication
Supporting XMP as a PGAS language
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Challenges of Data Race Detection for One-Sided Communication
• Process B owns „x“
Øanalyze accesses there
ØA and C send information about 

access to B
• Did access by A happen before 

access by C?
Ø Identify the synchronization path

§ Treatment of access that is made 
directly from base language
§ Thread sanitizer

§ Use vector clocks?
§ Not scalable (as we have seen for 

MPI one-sided)
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synchronize
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synchronize
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Applicability for XMP Coarray

• XMP Coarray do not allow local Coarray access beyond API usage
- No conflict of API and non-API memory access possible
- Full memory access tracking not necessary

• Analysis based on:
- Tracking API memory accesses
- Tracking API synchronization information

• Information is provided by the XMPT interface
- Callbacks for coarray memory access
- Callbacks for XMP synchronization

Due to the API and semantics of XMP the runtime analysis can be 
implemented much more efficiently (compared to MPI)
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Execute the Data Race Detection in the TBON

• In XMP we have no conflicts with base-language 

accesses

- No need to track and correlate with loads and stores 

of the application

• Idea: integrate with distributed DL detection

- Already tracks synchronization semantics

• MUST operates as a distributed agent network, 

organized in a tree-based overlay network 

(TBON)

• Benefit of approach:

- Less memory consumption on application threads 

- Fewer synchronization points with application threads
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Challenge: Monitoring application execution 
in applications using multiple-paradigms
Common tools interfaces for OpenMP and XMP
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History of Tools Interfaces

• 1996: PMPI 
- Profiling tools interface in MPI 1.0

• 2002: POMP (OpenMP profiling) proposal - rejected
• 2004: DMPL (OpenMP debugging) proposal - rejected
• 2005:  An OpenMP runtime API for profiling (Sun proposal) - rejected
• 2012: MPI_T query interface in MPI 3.0
• 2013: first draft of OMPT+OMPD (OpenMP profiling + debugging)
• 2015 - : Pushing OMPT to support runtime correctness
• 2018: OMPT and OMPD  became part of OpenMP 5.0 standard

• 2016 -: Work on XMPT interface in MYX
• 2017-: discussion for MPI_T event interface to be included in 4.0
• XXXX-YYY: work on MPI_T to be included in MPI 5.0
• 2019: XMPT will be proposed for inclusion to XMP specification



Overview of MYX (results and perspectives) 
Matthias Müller

Summary and outlook

• Improved programming models and environments are important for 
Exascale and beyond.

• Project goals and achievements of MYX
- Applied correctness checking to XMP and YML
- Integration of message passing, distributed shared memory and 

workflow into an integrated correctness model 
- Transfer of tools interface from OpenMP to XMP
- Improve existing parallel programming paradigms
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Safety net before and after the MYX project …

Source: Joel Pett in the Lexington Herald-Leader. 
http://2.bp.blogspot.com/-ERKbUp4-7XI/URBmWgfkpAI/AAAAAAAAuHs/SU3bsu7Aop4/s1600/safety+net.jpg

Before MYXAfter MYX
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Safety net: the current approach is good, but they are still holes …

Source: Joel Pett in the Lexington Herald-Leader. 
http://2.bp.blogspot.com/-ERKbUp4-7XI/URBmWgfkpAI/AAAAAAAAuHs/SU3bsu7Aop4/s1600/safety+net.jpg
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• T. Hilbrich, M. Weber, J. Protze, B. R. de Supinski, and W. E. Nagel. Runtime 
correctness analysis of MPI-3 nonblocking collectives. (EuroMPI 2016)

• J. Protze, J. Hahnfeld, D. H. Ahn, M. Schulz, and M. S. Müller. OpenMP Tools 
Interface: Synchronization Information for Data Race Detection. (IWOMP ‘17)

• J. Protze, C. Terboven, M. S. Müller, S. G. Petiton, N. Emad, H. Murai, and T. 

Boku. Runtime Correctness Checking for Emerging Programming 
Paradigms. (CORRECTNESS@SC 2017)

• A. Hück, J.-P. Lehr, S. Kreutzer, J. Protze, C. Terboven, C. Bischof, and M. S. 

Müller. Compiler-aided type tracking for correctness checking of mpi
applications. (CORRECTNESS@SC 2018)

• J. Protze, M. Schulz, D. H. Ahn, and M. S. Müller. Thread-local concurrency: a 
technique to handle data race detection at programming model abstraction. 
(HPDC 2018)


