Development of a Scalable Parallel Eigensolver for Large-scale Simulations and Data Analysis

Tetsuya Sakurai Director, Center for Artificial Intelligence Research (C-AIR) University of Tsukuba / JST CREST

Eigenvalue Problems in Simulation and Data Analysis

Applications

Simulation

Vibration analysis

First-principles calculation

Next generation silicon device

Molecular simulation

Elementary physics

Lattice-QCD & Nuclei Physics

Gene data analysis

Number of Node

Earthquake

risk evaluation

Quantum dots

H&E image analysis

Anomaly detection of infrastructure

Neural network computation

A Scalable Solver for Nonlinear Eigenvalue Problems

ESSEX II – Equipping Sparse Solvers for Exascale

Gerhard Wellein Bruno Lang Achim Basermann Holger Fehske Georg Hager Tetsuya Sakurai Kengo Nakajima Computer Science, University Erlangen Applied Computer Science, University Wuppertal Simulation & SW Technology, German Aerospace Institute for Physics, University Greifswald Erlangen Regional Computing Center Applied Mathematics, University of Tsukuba Computer Science, University of Tokyo

Nonlinear eigenvalue problems

Eigenvalue problem:

$$P(\lambda)\boldsymbol{x} = \boldsymbol{0} \qquad P(\lambda) \in \mathbb{C} \to \mathbb{C}^{n \times n} \quad \boldsymbol{x} \in \mathbb{C}^n \setminus \{\boldsymbol{0}\}$$

Quadratic eigenvalue problem:

$$P(\lambda) = \lambda^2 A_2 + \lambda A_1 + A_0$$

Polynomial eigenvalue problem:

$$P(\lambda) = \lambda^k A_k + \lambda^{k-1} A_{k-1} + \dots + A_0$$

General nonlinear:

$$P(\lambda) = \sqrt{\lambda}A + e^{-\lambda}B$$

Scalable Parallel Eigensolver

Quadrature-type Eigensolver:

Sakurai-Sugiura method (SSM) computes all the eigenvalues inside a given Jordan curve.

- For generalized eigenvalue problems (GEPs)
 - SS-Hankel (Sakurai and Sugiura, 2003)
 - SS-RR (Sakurai and Tadano, 2007)
 - SS-Arnoldi (Imakura, Du and Sakurai, 2013)
- For nonlinear eigenvalue problems (NEPs)
 - SS-Hankel (Asakura, Sakurai, et al. 2009)
 - SS-RR (Yokota and Sakurai, 2013)

NEP in Complex Band Structure Calculation

A nonlinear eigenvalue problem (NEP)

 $P(\lambda)\boldsymbol{x} = \boldsymbol{0} \qquad (\lambda \in \mathbb{C}, P(\lambda) \in \mathbb{C}^{n \times n}, \boldsymbol{x} \in \mathbb{C}^n \setminus \{\boldsymbol{0}\})$

appears in complex band structure (CBS) calculation where

$$P(\lambda) = -\lambda^{-1} H_{i-1,i} + (E - H_{i,i}) - \lambda H_{i,i+1}$$

Eigenvalues in a ring region are required

S. Iwase, Y. Futamura, A. Imakura, T. Sakurai, T. Ono, Efficient and Scalable Calculation of Complex Band Structure using Sakurai-Sugiura Method, Proc. SC17 (accepted).

Computing Eigenvalues in a Ring-shaped Region

Using SSM, we can compute the target eigenvalues by setting two circles (clockwise and anti-clockwise)

Utilization of BiCG

Three level parallelism of SSM in CBS calculation

Performance Evaluation

Performance evaluation

BN-CNT with 1,024 atoms

> # of grid points = 72x72x640 = 3,317,760 (matrix size)

> # of eigenvalues = 22, λ_{min} = 0.5

- Parameters for SSM and BiCG
 - ≻ N=32, M=8, L=16
 - Stopping criterion for BiCG : Relative residual < 1e-10</p>
- Computing environment: Oakforest-PACS
 - Parallelization setting
 - 17 threads/MPI
 - 4 MPI/node

Top layer (speedup ratio)

Middle layer

Middle layer (speedup ratio)

Bottom layer

Bottom layer (speedup ratio)

Performance evaluation

BN-CNT with 10,240 atoms

> # of grid points = 72x72x6400 = 33,177,600 (matrix size)

> # of eigenvalues = 34, λ_{min} = 0.5

- Parameters for SSM and BiCG
 - ≻ N=32, M=8, L=16
 - Stopping criterion for BiCG : Relative residual < 1e-10</p>
- Computing environment: Oakforest-PACS
 - Parallelization setting
 - 4 threads/MPI
 - 16 MPI/node

Middle layer

Middle layer (speedup ratio)

Bottom layer

Bottom layer (speedup ratio)

Conclusions

Simulation and Data Analysis

- Large-scale problems
- > High performance eigenvalue solver
- Various applications
- Developing a scalable parallel eigensolver
 - Sakurai-Sugiura method (SSM)
 - Quadrature-type parallel eigensolver
 - Hierarchical parallel structure
- Nonlinear Sakurai-Sugiura method for ring-shaped region
 - > Application for complex band structure calculation
 - Performance evaluation on Oakforest-PACS
 - BN-CNT with 10,240 atoms