
:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Overview	of	SmartDASH –
Results	and	Perspectives
Presenter:	José	Gracia
High	Performance	Computing	Center Stuttgart	(HLRS)	

Roger	Kowalewski (LMU),	Tobias	Fuchs	(LMU),	
Karl	Fürlinger (LMU),	Denis	Hünich (TUD),	Joseph	Schuchart (HLRS),
Daniel	Rubio	Bonilla	(IHR)

March	2019 1Overview	of	SmartDASH	- Results	and	Perspectives

Garching,	22	January	2019	|	2Smart-DASH	Update,	SPPEXA	APN	2019

DASH	- Overview

n DASH	is	a	C++	template	library,	that	offers
– Distributed	data	structures,	e.g.,	dash::Array<int>
– Parallel	algorithms,	e.g.,	dash::sort()

n Generalizes	shared	memory	programming	to	distributed	
memory	systems:

Shared	Memory	Node	1 Shared	Memory	Node	NShared	Memory	Node

std::vector<int> v;

Thread
1

Thread
2

v[33]=42;
cout<<v[0];

n Multiple	threads	
access	physically
shared	memory

n Multiple	nodes	
connected	by	a	
high-speed	network

…

n Multiple	threads	
(“units”)	access	logically
shared	memory

dash::Array<int> a(1000);

Unit
3

Unit
1

cout<<a[0];

Unit
2 a[999]=42;

int b=a[10];

Garching,	22	January	2019	|	3Smart-DASH	Update,	SPPEXA	APN	2019

DASH	- A	PGAS	Programming	System

n DASH	realizes	a	PGAS	(Partitioned	Global	Address	Space)	
abstraction
– SPMD	execution	model,	like	MPI
– Global	address	space:	data	accessible	from	everywhere
– Partitioned:	data	distribution	is	configurable and	not	hidden

int	mine; int	mine; int	mine; int	mine;

shared
local

shared
remoteUnit	0:

dash::Array	arr
with	12	elements10 2 43 5 76 8 109 11

Unit	0 Unit	1 Unit	2 Unit	3

arr arr arr arr

int	ours;

Garching,	22	January	2019	|	4Smart-DASH	Update,	SPPEXA	APN	2019

DASH	– Project	Overview

DASH	Runtime	(DART)

DASH		C++	Template	Library

DASH	Application

Tools	and	Interfaces

Hardware:	Network,	Processor,
Memory,	Storage

One-sided	Communication
Substrate

MPI GASnet GASPIARMCI

DART	API

Phase	I	(2013-2015) Phase	II	(2016-2019)

LMU	Munich Project	management,	
C++	template	library

Project	management,	
C++	template	library,	
DASH	data	dock

TU	Dresden
Libraries	and	

interfaces,	tools	
support

Smart	data	structures,	
resilience

HLRS	Stuttgart DART	runtime DART	runtime,	
Tasking

KIT	Karlsruhe Application	case	
studies

IHR	Stuttgart
Smart	deployment,	
Application	case	

studies

DASH	is	one	of	16	SPPEXA	projectswww.dash-project.org

Garching,	22	January	2019	|	5Smart-DASH	Update,	SPPEXA	APN	2019

Global	Data	Structures	Overview

Container Description Data	distribution

Shared<T> Shared	Scalar

Array<T> 1D	Dist.	Array

NArray<T,	N> N-dim.	Dist.	Array

Coarray<T[R][S]> CAF-like	Coarray	

List(*)<T>,	
Map(*)<T>

Dynamic	data	
structures	
(growing/shrinking)

(*)	Under	Development

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Recent	activities

• Distributed	tasking	(talk	by	Joseph	Schuchart)
• Halo	/	stencil	wrapper	for	NArray
• Sparse	matrix	extension
• Partitioned	sorting;	Replication
• Graph	extension;		Dyloc
• Performance	and	productivity	evaluation

Overview	of	SmartDASH	- Results	and	Perspectives 6March	2019

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

HALO	/	STENCIL	WRAPPER
FOR	NARRAY

Overview	of	SmartDASH	- Results	and	Perspectives 7March	2019

NArray with Support for Stencil and Halo Operation

Index calculation is simple in the inner region but difficult across
distribution borders

Explicit data transfer for halo exchange

Halo wrapper for NArray:

– easy access to neighbor cells across distribution borders

– asynchronous exchange of halos

– halo determined user defined stencil operator

Denis Hünich

Halo NArray Wrapper - Architecture

Denis Hünich

…

N-Dim NArray
Global Boundary

Spec Stencil Specs

Halo NArray Wrapper

Stencil
Operator

Stencil
Operator

Stencil
Operator

…

Distributed structured
N-Dimensional grid

User-defined stencils

Built-in Halo environment

– Halo memory

– Halo data exchange

Inner and boundary based
views and operations

Halo NArray Wrapper - Code Example

Denis Hünich

…
// Stencil points for North, South, West and East
StencilSpecT stencil_spec(StencilT(-1, 0), StencilT(1, 0),

StencilT(0, -1), StencilT(0, 1));
// Periodic/cyclic global boundary values for both dimensions
GlobBoundSpecT bound_spec(dash::halo::BoundaryProp::CYCLIC,

dash::halo::BoundaryProp::CYCLIC);
// HaloWrapper for source and destination subgrids
HaloMatrixWrapperT src_halo(src_matrix, bound_spec, stencil_spec);
…
// Stencil specific operator for both subgrids
auto src_stencil_op = src_halo.stencil_operator(stencil_spec);
…
// Iteration loop
for (auto d = 0; d < iterations; ++d) {
…

// start asynchronous Halo data exchange
src_halo->update_async();
// Calculation of all inner subgrid elements via inner stencil operator
src_op->inner.update(…);
// Wait until all Halo data exchanges are finished
src_halo->wait();
// Calculation of all boundary subgrid elements via stencil iterator
auto it_bend = src_op->boundary.end();
for (auto it = current_op->boundary.begin(); it != it_bend; ++it) {

…
}

…
}

Halo NArray Wrapper – Evaluation w/ 2D Heat-Equation

gcc 7.1.0 and OpenMPI 3.0.0

Each compute node has two Haswell E5-2680 v3 CPUs at 2.50GHz with 12 physical
cores each and 64 GB memory

Denis Hünich

“A	Halo	Abstraction	for	Distributed	N-Dimensional	Structured	Grids	within	the	C++	PGAS	
Library	DASH	”,	D.	Hünich,	A.	Knüpfer;	submitted	to	EuroPar 2019

gcc 7.1.0 and OpenMPI 3.0.0

Each compute node has two Haswell E5-2680 v3 CPUs at 2.50GHz with 12 physical
cores each and 64 GB memory

55000² grid elements

Halo NArray Wrapper - Strong Scaling 2D Heat-Equation

Denis Hünich

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

SPARSE	MATRIX	EXTENSION	

Overview	of	SmartDASH	- Results	and	Perspectives 13March	2019

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Sparse	Matrix	Extension
• Dash	container	for	sparse	matrices
• Based	on	CSR	format
• Distribution	of	the	Matrix	can	be	

1D	or	2D

• Offers	methods	for	common	matrix	
operations	with:
– sparse	matrices,
– dense	matrices,
– vectors	
– and	scalars

Overview	of	SmartDASH	- Results	and	Perspectives 14March	2019

2D	matrix	with	
1D	partitioning

2D	matrix	with	
1D	partitioning

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Sparse	Matrix	Extension	– Evaluation	with	CG
• Conjugate	gradient	solvers	usually	

employ	sparse	matrices
• Reference	version	uses	MPI
• Main	operations:

– sparse	matrix-vector	mult,
– global	dot-product

• DASH-only	implementation	using	
sparse	matrix	extension

• Expects	performance	gain	mainly	
due	to:
– less	memory	indirection
– dot	product	with	

dash::reduce()	

Overview	of	SmartDASH	- Results	and	Perspectives 15March	2019

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

PARTITIONED	SORTING

Overview	of	SmartDASH	- Results	and	Perspectives 16March	2019

Garching,	22	January	2019	|	17Smart-DASH	Update

Partition-based	Sort

4.	Merge	Sort

3.	All-to-all

2.	Determine	
Partitions

1.	Local	Sort

0.	Initial	Data

Garching,	22	January	2019	|	18Smart-DASH	Update

Partition-based	Sort	– Distributed	Memory

n PGAS	approach	beneficial	
because	data	locality	is	
primary	concern

n Partition-based	sort	
algorithm	moves	data	only	
once

n Strong	scaling	on	SuperMUC
n sorting	~16GB	DP	numbers

n Competitors:
– HykSort (SC2013),	segfaults for	>4GB
– Charm++,	number	of	elements	must	be	2^n

Strong Scaling Area Plot

Garching,	22	January	2019	|	20Smart-DASH	Update

Partition-based	Sort	– Distributed	Memory

n PGAS	approach	beneficial	
because	data	locality	is	
primary	concern

n Partition-based	sort	
algorithm	moves	data	only	
once

n Weak	scaling	on	SuperMUC
n sorting	4GB	DP	numbers	per	

core

Weak Scaling Area Plot

Garching,	22	January	2019	|	22Smart-DASH	Update

Partition-based	Sort	– Shared	Memory

n PGAS	approach	beneficial	
because	data	locality	is	
primary	concern

n Partition-based	sort	
algorithm	moves	data	only	
once

n 2	sockets,	28	cores,	4	NUMA	domains
n sorting	~5GB	of	integer	numbers

n Competitors:
– TBB
– OpenMP

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

PERFORMANCE	AND	
PRODUCTIVITY	EVALUATION

Overview	of	SmartDASH	- Results	and	Perspectives 23March	2019

Garching,	22	January	2019	|	24Smart-DASH	Update,	SPPEXA	APN	2019

Case	Study:	The	Cowichan	Problem	Suite

n Cowichan	problems
– A	benchmark	suite designed	to	investigate	the	usability	of	
parallel	programming	systems	(1990s)

– 13	“toy”	problems,	quick	implementation,	composable	by	
chaining	[1]

n Previous	work	by	Nanz	et	al.	[2]	selected	five	benchmarks to	
evaluate	the	usability	of	multicore	languages
– Four	programming	systems	compared:

• Go,	Cilk,	TBB,	Chapel
– Metrics:

• Usability:	LOC,	development	time
• Performance:	execution	time	and	scalability

[1]	Wilson,	Gregory	V.,	and	R.	Bruce	Irvin.	“Assessing	and	comparing	the	usability	of	parallel	programming	systems.”
University	of	Toronto.	Computer	Systems	Research	Institute,	1995.	

[2]	Nanz,	Sebastian,	Scott	West,	Kaue	Soares	Da	Silveira,	and	Bertrand	Meyer.	"Benchmarking	usability	and	performance	
of	multicore	languages." In Empirical	Software	Engineering	and	Measurement,	2013	ACM/IEEE	International	
Symposium	on,	pp.	183-192.	IEEE,	2013.

Garching,	22	January	2019	|	25Smart-DASH	Update,	SPPEXA	APN	2019

Case	Study:	Data	Structures	and	Algorithms

n x	n
Integer
Matrix

n x	n
Boolean
Matrix

(x
,y
,v
al
)	T
rip

le
s

FP
Matrix

(x
,y
,v
al
)	T
rip

le
s

(x
,y
)	P

oi
nt
s

FP	Vector

FP
	V
ec
to
r

*

outer

sort extract

product

select

randmat

thresh

winnow

n

Garching,	22	January	2019	|	26Smart-DASH	Update,	SPPEXA	APN	2019

Cowichan	Results	– Lines	of	Code

n DASH	is	not	the	most	concise	approach,	but	not	much	
worse	than	the	best	solution
– DASH	is	the	only	case	where	the	same	code	can	be	run	on	
shared	memory	and	distributed	memory	systems!

“Investigating	the	Performance	and	Productivity	of	DASH	Using	the	Cowichan	Problems”, K.	
Fürlinger,	R. Kowalewski,	T. Fuchs,	and	B.	Lehmann;	Proc.	of	the	International	Conference	on	
High	Performance	Computing	in	Asia-Pacific	Region,	Tokyo	Jan.	2018

Garching,	22	January	2019	|	27Smart-DASH	Update,	SPPEXA	APN	2019

Cowichan	Results	– Shared	Memory	(1)

n Platform:	Single	node of	SuperMUC	Phase	2	(Haswell)
– Haswell	Xeon	E5-2697,	2.6	GHz,	28	cores	per	node,	64	GB	mem
– 30k	x	30k	matrix
– Intel	Compiler	(icc)	v.	18.0.2	used	for	all	programming	systems

Absolute	performance,	using	all	28	cores,	30k	x	30k	MatrixPerformance	relative	to	DASH,	using	all	28	cores,	30k	x	30k	Matrix

better

Garching,	22	January	2019	|	28Smart-DASH	Update,	SPPEXA	APN	2019

Cowichan	Multinode	Scaling	and	Summary

30k	x	30k,	Speedup	vs	1	node 80k	x	80k,	Speedup	vs	2	nodes

n Platform:	Up	to	16	nodes of	SuperMUC
– Haswell	Xeon	E5-2697,	2.6	GHz,	28	cores	per	node
– 64	GB	of	main	memory
– DASH	is	the	only approach	that	can	also	use	distributed	
memory	machines	(the	same	source	code)

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

OUTLOOK	&	CONCLUSION

Overview	of	SmartDASH	- Results	and	Perspectives 29March	2019

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Future	activities
• Tools	interface:	OMPT-like

– performance	tools:	Scalasca,	Vampir,	Paraver
– task	graph	visualisation	/	debugging

• Evaluation	with	graph	algorithms
– complex	communication	pattern	challenging	for	MPI

• Execution	spaces	&	memory	spaces:
– execute	on	accelerators
– access	memory	on	accelerators,	NVRAM,	etc

• Load	balancing
– requires	data-migration	and/or	task-migration

Overview	of	SmartDASH	- Results	and	Perspectives 30March	2019

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Conclusions
• DASH	has	developed	into	a	mature	framework	for	a	
wide	variety	of	HPC	workloads

• it	addresses	main	performance	challenges	such	as:
data-locality,	multi-level	parallelism,	overlap	of	
communication	and	computation,	global	
synchronisation

• performance	comparable	with	established	solutions
• incremental	porting	of	C++	code;	STL	conformity
• interoperable	with	MPI	and	OpenMP
• DASH	v0.3	since	SC18,	DASH	v0.4	in	Q2/Q3	2019

Overview	of	SmartDASH	- Results	and	Perspectives 31March	2019

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Acknowledgements
• Funding

• The	DASH	team
T.	Fuchs (LMU),	R.	Kowalewski (LMU),	F.	Mößbauer (LMU),	
K.	Fürlinger (LMU),	D.	Hünich (TUD),	A.	Knüpfer (TUD),	
J.	Schuchart (HLRS),	J.	Gracia (HLRS),	D.	Rubio	(IHR),	
C.	Glass	(IHR,	HSU)

• DASH	is	on	GitHub
– https://github.com/dash-project/dash

Overview	of	SmartDASH	- Results	and	Perspectives 32March	2019

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

Thank	you	for	your	attention

March	2019 33Overview	of	SmartDASH	- Results	and	Perspectives

