
Roger Kowalewski, Tobias Fuchs, Karl Fürlinger

kowalewski@nm.ifi.lmu.de

Ludwig-Maximilians Universität (LMU) Munich

DASH Project
www.dash-project.org

Utilizing Heterogeneous Memory
Hierarchies in PGAS

mailto:kowalewski@nm.ifi.lmu.de
http://www.dash-project.org/

Architectural Trends in HPC Systems

 Capacity and bandwidth scale significantly slower than computation

Utilizing Heterogeneous Memory Hierarchies in PGAS 2

Ni, Xiang, et al. "Runtime Techniques for Programming with Fast and Slow

Memory." Cluster Computing (CLUSTER), 2017 IEEE International Conference

on. IEEE, 2017.

Implications for Modern HPC Architectures

 Emerging Systems feature heterogeneous multi-tiered memory spaces

• Different characteristics (latency, bandwidth) and capabilities (non-volatility, scratch spaces, …)

 Example: Intel Xeon Phi Knights Landing

• Discussed throughout this paper

Utilizing Heterogeneous Memory Hierarchies in PGAS 3

Algorithmic Requirements

 Regular vs. Random Access

 Latency limited / Bandwidth limited

 Temporal scope of data
• Application life time

• Scratch Space

 Applied Operations
• Read-Only

• Write-Only

• Read / Write

 Functionality
• Replication / Migration

• Checkpoint Restart mechanisms (non-volatile memory)

Utilizing Heterogeneous Memory Hierarchies in PGAS 5

 Transparently managed through hardware or operating system (Cache Mode)

 Software managed “flat” memory model (Flat Mode)

 Scientists need productive programming abstractions.

Managing Heterogeneous Memory

Utilizing Heterogeneous Memory Hierarchies in PGAS 6

KNL Cache Mode

KNL Flat Mode

DASH Memory Allocation Model

 A memory space abstracts a specific memory resource (e.g., Intel KNL HBW).

• Unified Allocation / Deallocation Interface

• Consistency Semantics

• Memory Traits as an interface to specify and query characteristics and properties

 Multiple Memory Spaces may be constructed from the same memory resource.

 A memory allocator provides specific allocation strategies.

• Organizes memory from the underlying memory space.

• Error and Fallback strategies.

• Behavior may be specific for certain use cases.

Utilizing Heterogeneous Memory Hierarchies in PGAS 7

DASH Memory Traits

 Prescriptive (required) Traits

• Domain: Global, Local

• Location: Host, Device, etc

• Permissions: Read, Write, Read / Write

 Descriptive (requested) Traits

• Available Capacity

• Distance: Near, far

• Optimization Parameter: Latency, Bandwidth, Capacity

• Page size

Utilizing Heterogeneous Memory Hierarchies in PGAS 8

DASH Memory Allocator Traits

Allocation strategies are configurable through allocator traits.

 Memory Domain

• Global (distributed)

• Local Memory

 Thread Safety

 Fallback Policy

 Memory Alignment

 Pinning

Utilizing Heterogeneous Memory Hierarchies in PGAS 9

DASH Memory Organization

Utilizing Heterogeneous Memory Hierarchies in PGAS 10

Memory Spaces and DASH Containers

 DASH provides a set of Memory Spaces
• Default Space (usually DRAM)

• HBW Space (Intel KNL)

• NVRAM (will be available in future)

• Device Memory (will be available in future)

 … along with a set of memory allocators
• Both global and local

• Default strategies for various DASH containers

 Integrated as template parameter

into the DASH Container Concept

 Local allocators to the C++11 allocator

concept

Utilizing Heterogeneous Memory Hierarchies in PGAS 11

Listing 1: Memory Spaces interface

Integration into DASH Containers

Utilizing Heterogeneous Memory Hierarchies in PGAS 12

Listing 2: Example with DASH Memory Spaces

Case Study: Cowichan Problems on Intel
KNL

 Use Case: Cowichan Problems
• Set of small kernels to assess the usability of parallel programming languages

• Basic data structures: 1D and 2D Arrays

• Algorithms
– Matrix Multiply

– Parallel Sort

– Prefix-Sum

 Platform: Intel Xeon Phi 7210 (KNL Family), LRZ Test System
• Only 1 Node, 64 Cores

• 384 GB DRAM

• 16 GB MCDRAM (400 GB/s memory bandwidth)

 First experiences with DASH memory spaces

 Evaluating the impact of Intel KNL MCDRAM

Utilizing Heterogeneous Memory Hierarchies in PGAS 13

 Matrix Size: 20k x 20k

 Data set fits completely into High Bandwidth Memory

First Results (1)

Utilizing Heterogeneous Memory Hierarchies in PGAS 14

Figure 1a: Static Memory Allocation Figure 1b: Strategic Allocation in HBM / DRAM

 Matrix Size: 50k x 50k

 Data set does not fit into High Bandwidth Memory

First Results (2)

Utilizing Heterogeneous Memory Hierarchies in PGAS 15

Figure 2a: Static Memory Allocation Figure 2b: Strategic Allocation in HBM / DRAM

Future Work

 More detailed evaluation to study the impact of Intel‘s MCDRAM

• Scaling to multiple nodes

• More „classic“ HPC applications (e.g. ,stencils, iterative solvers, etc.)

 More advanced Mechanisms for Replication (Mirroring), considering

• Resource-aware parameters like capacity

• Depending on the algorithmic requirements

• Similar to concepts which can be found in other programming languages as well

Utilizing Heterogeneous Memory Hierarchies in PGAS 16

Related Work

 C++17 Memory Technical Specification

 OpenMP Technical Report: Memory Management (v5.0)

 Kokkos Memory Spaces

 Other PGAS approaches try to support heterogeneous memory spaces as well.

Utilizing Heterogeneous Memory Hierarchies in PGAS 17

Acknowledgements

Utilizing Heterogeneous Memory Hierarchies in PGAS 18

dash-project.org

github.com/dash-project

dash-project.slack.com

Funding

Team

T. Fuchs LMU, R. Kowalewski LMU, J. Schuchart HLRS,
D. Hünich TUD, A. Knüpfer TUD, J. Gracia HLRS, C. Glass HLRS,
H. Zhou HLRS, K. Idrees HLRS, F. Mößbauer LMU,
K. Fürlinger LMU

