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Architectural Trends in HPC Systems

 Capacity and bandwidth scale significantly slower than computation
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Implications for Modern HPC Architectures

 Emerging Systems feature heterogeneous multi-tiered memory spaces

• Different characteristics (latency, bandwidth) and capabilities (non-volatility, scratch spaces, …)

 Example: Intel Xeon Phi Knights Landing

• Discussed throughout this paper
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Algorithmic Requirements

 Regular vs. Random Access

 Latency limited / Bandwidth limited

 Temporal scope of data
• Application life time

• Scratch Space

 Applied Operations
• Read-Only

• Write-Only

• Read / Write

 Functionality
• Replication / Migration

• Checkpoint Restart mechanisms (non-volatile memory)
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 Transparently managed through hardware or operating system (Cache Mode)

 Software managed “flat” memory model (Flat Mode)

 Scientists need productive programming abstractions.

Managing Heterogeneous Memory
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DASH Memory Allocation Model

 A memory space abstracts a specific memory resource (e.g., Intel KNL HBW).

• Unified Allocation / Deallocation Interface

• Consistency Semantics

• Memory Traits as an interface to specify and query characteristics and properties

 Multiple Memory Spaces may be constructed from the same memory resource.

 A memory allocator provides specific allocation strategies.

• Organizes memory from the underlying memory space.

• Error and Fallback strategies.

• Behavior may be specific for certain use cases.

Utilizing Heterogeneous Memory Hierarchies in PGAS 7



DASH Memory Traits

 Prescriptive (required) Traits

• Domain: Global, Local

• Location: Host, Device, etc

• Permissions: Read, Write, Read / Write

 Descriptive (requested) Traits

• Available Capacity

• Distance: Near, far

• Optimization Parameter: Latency, Bandwidth, Capacity

• Page size
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DASH Memory Allocator Traits

Allocation strategies are configurable through allocator traits.

 Memory Domain

• Global (distributed)

• Local Memory

 Thread Safety

 Fallback Policy

 Memory Alignment

 Pinning
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DASH Memory Organization
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Memory Spaces and DASH Containers

 DASH provides a set of Memory Spaces
• Default Space (usually DRAM)

• HBW Space (Intel KNL)

• NVRAM (will be available in future)

• Device Memory  (will be available in future)

 … along with a set of memory allocators
• Both global and local

• Default strategies for various DASH containers

 Integrated as template parameter

into the DASH Container Concept

 Local allocators to the C++11 allocator

concept
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Listing 1: Memory Spaces interface



Integration into DASH Containers
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Listing 2: Example with DASH Memory Spaces



Case Study: Cowichan Problems on Intel 
KNL

 Use Case: Cowichan Problems
• Set of small kernels to assess the usability of parallel programming languages

• Basic data structures: 1D and 2D Arrays

• Algorithms
– Matrix Multiply

– Parallel Sort

– Prefix-Sum

 Platform: Intel Xeon Phi 7210 (KNL Family), LRZ Test System
• Only 1 Node, 64 Cores

• 384 GB DRAM

• 16 GB MCDRAM (400 GB/s memory bandwidth)

 First experiences with DASH memory spaces

 Evaluating the impact of Intel KNL MCDRAM
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 Matrix Size: 20k x 20k

 Data set fits completely into High Bandwidth Memory

First Results (1)
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Figure 1a: Static Memory Allocation Figure 1b: Strategic Allocation in HBM / DRAM



 Matrix Size: 50k x 50k

 Data set does not fit into High Bandwidth Memory

First Results (2)

Utilizing Heterogeneous Memory Hierarchies in PGAS 15

Figure 2a: Static Memory Allocation Figure 2b: Strategic Allocation in HBM / DRAM



Future Work

 More detailed evaluation to study the impact of Intel‘s MCDRAM

• Scaling to multiple nodes

• More „classic“ HPC applications (e.g. ,stencils, iterative solvers, etc.)

 More advanced Mechanisms for Replication (Mirroring), considering

• Resource-aware parameters like capacity

• Depending on the algorithmic requirements

• Similar to concepts which can be found in other programming languages as well
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Related Work

 C++17 Memory Technical Specification

 OpenMP Technical Report: Memory Management (v5.0)

 Kokkos Memory Spaces

 Other PGAS approaches try to support heterogeneous memory spaces as well.
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